AD-A215 880

DEIEIMINALION UF THE UNDERLYING
TASK SCHEDULING ALGORITHM
FOR AN ADA RUNTIME SYSTEM

THESIS

Gary Alen Whitted , '
Captain, USAF R

AFIT/GCS/ENG/89D-18 'E

..‘;_._..- .a‘ ._.IL_:

DTIC
ELECTE ™
DE0151989

DEPARTMENT OF THE AIR FORCE CAB
AIR UNIVERSITY =

AIR FORCE INSTITUTE OF TECHNOLOGY

‘. .-.-.-._—......._..--’

\ -

Wright-Patterson Air Force Base, Ohio

| e | 89 12 15 053

AFIT/GCS/ENG/89D-18

DETERMINATION OF THE UNDERLYING
TASK SCHEDULING ALGORITHM
FOR AN ADA RUNTIME SYSTEM

THESIS

Gary Alen Whitted
Captain, USAF

AFIT/GCS/ENG /89D-18 D T l C

ELECTEN
DEC 151989

Approved for public release; distribution unlimited

AFIT/GCS/ENG/89D-18

Abstract

The purpose of this thesis investigation was to determine whether the task scheduling algo-
rithm of an Ada compiler could be detected using a suite of Ada programs. This was done by
identifying the task parameters and algorithm characteristics which differentiate one scheduling
algorithm from the others. After these parameters and characteristics were identified, a set of
test cases was developed to encompass the various parameter relationshigs required to detect the
execution of individual algorithms. These test cases were modeled using Ada programs. Then,
the programs were compiled and executed using several Ada compilers where the task scheduling
algorithms of five run-time systems was known. The execution results were analyzed to determine
whether the Ada programs were capable of revealing the task scheduling algorithm used by the
Ada run-time system. This analysis showed that the detection of five scheduling schemes is possi-
ble using a single Ada program. Recommendations are made to improve the current Ada program

leading to an automated tool in which the user analysis could be removed. = |- ;.

xi

rooo

AFIT/GCS/ENG/89D-18

DETERMINATION OF THE UNDERLYING
TASK SCHEDULING ALGORITHM

FOR AN ADA RUNTIME SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Gary Alen Whitted, M.B.A, BS.E

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Acknowledgments

I wish to thank a number of people who helped me during the research on this thesis. In
particular, several members of the Language Control Facility (LCF) at the Aeronautical Systems
Division (ASD) Communications-Computer Systems Center provided invaluable assistance with
the Ada program compilation and execution phase of this thesis. Mr Tom Stripe provided e with
several hours of invaluable help on the LCF VAX computer. Mr Bobby Evans and Steve Wil
provided encouragement, support, and use of their computers throughout the final months of this

effort.

My AFIT classmates also provided encouragement and assistance. In particular. Capt Steve
March helped me with some difficult and elusive problems with developing Ada programs for my

test cases.

[also wish to thank my thesis committee. Dr. Gary Lamont provided me with some valuable
insight into scheduling algorithm theory. Major David Umphress provided me with a wealth of
knowledge about the Ada language, in particular, Ada tasking constructs. A special thanks to my
thesis advisor, Major James Howatt. He provided en~ouragement and editing support throughout
this document. And his guidance and critical analysis helped me to achieve a successful thesis

conclusion.

I want to thank my children for their prayers and support even though I sper. many hours
away from home working on this thesis. A special thanks to my precious w.ie, Carol, for her

patience, prayers, support, and understanding throughout this whole ordeal.

Finally, I want to thank my Lord and Saviour, Jesus Christ for the wisdom, knowledge,
understanding, and strength which He continually provides to me. Completing this thesis has

helped me fully appreciate that I can do all things through Christ Jesus, who strengthens me.

Gary Alen Whitted

i Dist

CHQUW
Comge .,
it

;o P\’\l

i

ten/f
]
1'ty Codss
Avask o ang/or
Speolal

Table of Contents

Page

Acknowledgments L 1
Table of Contents il
Listof Figures o vi
Listof Tables vii
Abstract . . L. X1
L. Introduction L 1-1
1.1 Background 1-1

1.2 Statement of the Problem 1-2

1.3 Summary of Current Knowledge 1-3

1.4 Assumptions Lo 1-4

1.5 Scope of the Thesis Project 1-4

1.6 Standards 1-5

1.7 Approach/Methodology, . 1-5

1.8 Thesis Organization 1-6

IL Literature Review 2-1
2.1 Current Research Observations of Ada Task Scheduling 2-1

2.1.1 Real-Time Scheduling Requirements. 2-1

2.1.2 Specific Ada Limitations. - 2-2

2.1.3 Previous Attemps to Solve Ada’s Limitations. 2-4

2.2 Scheduling Algorithm Detection Research 2-7

2.2.1 Scheduling Algorithm Characteristics. 2-9

2.2.2 Scheduling Algorithm Descriptions. 2-10

2.3 SUMMALY e 2-14

111

Iv.

V.

VI

Requirements Analysis for Ada Task Scheduling Detection

3.1 Scheduling Algorithm Characteristics/Parameters

3.2 Predicted Execution Results for the Test Cases

Design and Development of Ada Task Schedule Detection Test Cases

4.1 Ada Constructs Used for Implementation
4.1.1 Task Arrival Times.
4.1.2 Task Service Time.
4.1.3 CPU Burst Requirements.
4.14 Task Priorities.
4.1.5 Measurement of Start and Finish Times.|

4.2 Overall Parent Program Structure

Execution Results for Ada Task Scheduling Detection
5.1 AlsysPCAT AdaCompiler
5.1.1 Results with SLICE Option Set to Zero.
5.1.2 Results with SLICE Option Set to50ms.
52 VAX AdaCompiler
5.2.1 Results without the ‘Pragma TIME_SLICE ()’ Statement. . .
5.2.2 Results with the ‘Pragma TIME_SLICE (0.05)’ Statement.
5.3 Meridian AdaVantage Compiler
5.4 Elxsi/Verdix Ada Compiler
5.5 Encore/Verdix Concurrent Ada Compiler

568 Summary e e

Conclusion and Recommendations
6.1 Conclusions
6.2 Recommendations

6.3 Thesis Contribution

1-7

1-3

4-8

Page

Appendix A. Appendix A: Predicted Gantt Charts for Test Cases 1 through 27 . . A-l
Appendix B. Appendix B: Test Case Execution Results B-1
Bibliography BIB-1
Vita . . o VITA-1

Figure

4.1.

Ada Task States

List of Figures

vi

List of Tables

Table

3.1. Algorithm Detection Parameter Relationships for Test Cases 1 thru 27

3.2. Predicted Execution Results for Test Cases 1 - 9

3.3. Predicted Execution Results for Test Cases 10 - 18
3.4. Predicted Execution Results for Test Cases 19 - 27
3.5. Scheduling Algorithm Detection Summary
3.6. Task Parameter Relationships for Test Case 28 .
3.7. Predicted FCFS Gantt Chart for Test Case 28 . .
3.8. Predicted RR Gantt Chart for Test Case 28 . . .
3.9. Predicted SJF Gantt Chart for Test Case 28 . . .
3.10. Test Case 28 FCFS Prediction Summary
3.11. Test Case 28 RR Prediction Summary

3.12. Test Case 28 Dynamic SJF Prediction Summary

5.1. Execution Results Summary

A.l. Predicted Gantt Chart (S4 < Sg) for Test Case 1
A.2. Predicted Gantt Chart (Sp < S) for Test Case 1
A.3. Predicted Gantt Chart for Test Case 2
A.4. Predicted Gantt Chart for Test Case 3
A.5. Predicted Gantt Chart for Test Case 4
A.6. Predicted Gantt Chart for Test Case 5
A.7. Predicted Gantt Chart for Test Case 6
A 8. Predicted Gantt Chart for Test Case 7
A.9. Predicted Gantt Chart for Test Case 8

A.10.Predicted Gantt Chart for Test Case 9

A.11.Predicted Gantt Chart (S4 < Sp) for Test Case 10

Page

3-3

3-12
3-12
3-14
3-14

3-15

A-2
A-3
A-3
A-3
A-4
A-4
A-4
A-5

A-5

Table Page
A.12 Predicted Gantt Chart (Sp < S4)for Test Case 10 A-5
A.13.Predicted Gantt Chart for Test Case 11 S A-B
A.l14.Predicted Gantt Chart for Test Case 12 A6
A.15.Predicted Gantt Chart for Test Case 13 A-B
A.16.Predicted Gantt Chart for Test Case 14 AT
A.17.Predicted Gantt Chart for Test Case 15 AT
A.18 Predicted Gantt Chart for Test Case 16 A-T
A.19.Predicted Gantt Chart for Test Case 17 A-8
A.20.Predicted Gantt Chart for Test Case 18 A-8
A.21.Predicted Gantt Chart (S4 < Sg)for Test Case 19 A-8
A.22 Predicted Gantt Chart (Sy < S4)for Test Case 19 A-9
A.23.Predicted Gantt Chart for Test Case 20 A-9
A.24.Predicted Gantt Chart for Test Case 21 A9
A.25.Predicted Gantt Chart for Test Case 22 A-10
A.26.Predicted Gantt Chart for Test Case 23 A-10
A.27 Predicted Gantt Chart for Test Case 24 A-10
A.28.Predicted Gantt Chart for Test Case 25 A-11
A.29.Predicted Gantt Chart for Test Case 26 A-ll
A.30.Predicted Gantt Chart for Test Case 27 A-11
B.1. Alsys PC AT AdaCompilerResults B-2
B.2. Alsys PC AT Ada Compiler Results (Cont'd) B-3
B.3. Alsys PC AT Ada Compiler Results (Cont’d) B-4
B.4. Alsys PC AT Ada Compiler Results (Cont’d) B-5
B.5. Alsys PC AT Ada Compiler Results (Cont’d) B-5
B.6. Alsys PC AT Ada Compiler Results (Cont’d) B-6
B.7. Alsys PC AT Ada Compiler Resuits (Cont'd) B-7
B.8. Alsys PC AT Ada Compiler Results (Cont’d) B-8

viil

Table

B.9. Alsys PC AT Ada Compiler Results (Cont’d) . .
B.10.Alsys PC AT Ada Compiler Results (Cont’d) . .
B.11.Alsys PC AT Ada Compiler Results (Cont’d) . .
B.12.Alsys PC AT Ada Compiler Results (Cont’d) . .
B.13.VAX Ada Compiler Results
B.14.VAX Ada Compiler Results (Cont’d)
B.15.VAX Ada Compiler Results (Cont’d)
B.16.VAX Ada Compiler Results (Cont’d)
B.17.VAX Ada Compiler Results (Cont’d)
B.18.VAX Ada Compiler Results (Cont’d)
B.19.VAX Ada Compiler Results (Cont’d)
B.20.VAX Ada Compiler Results (Cont’d)
B.21.VAX Ada Compiler Results (Cont’d)
B.22.VAX Ada Compiler Results (Cont’d)
B.23.VAX Ada Compiler Results (Cont’d)
B.24.VAX Ada Compiler Results (Cont’d)
B.25.Meridian AdaVantage Compiler Results
B.26 . Meridian AdaVantage Compiler Results (Cont’d)
B.27.Meridian AdaVantage Compiler Results (Cont’d)
B.28.Meridian AdaVantage Compiler Results (Cont’d)
B.29.Elxsi/Verdix Ada Compiler Results
B.30.Elxsi/Verdix Ada Compiler Results (Cont’d) . .
B.31.Elxsi/Verdix Ada Compiler Results (Cont’d) . .
B.32.Eixsi/Verdix Ada Compiler Results (Cont'd) . .
B.33.Elxsi/Verdix Ada Compiler Results (Cont’d) . .
B.34.Elxsi/Verdix Ada Compiler Results (Cont’d) . .

B.35.Encore/Verdix Concurrent Ada Compiler Results

Page
B-9

B-10

B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-29
B-30

B-31

Table

B.36.Encore/Verdix Concurrent Ada Compiler Results (Cont’d)

B.37.Encore/Verdix Concurrent Ada Compiler Results (Cont'd)

B.38.Encore/Verdix Ada Compiler Results (Cont’d)
B.39.Encore/Verdix Ada Compiler Results (Cont’d)

B.-0.Encore/Verdix Ada Compiler Results (Cont’d)

Page
B-32
B-33
B-34
B-34

B-35

DETERMINATION OF THE UNDERLYING
TASK SCHEDULING ALGORITHM

FOR AN ADA RUNTIME SYSTEM

I. Introduction

Since DoD regulations mandate the use of Ada for real-time systems development, predictable
Ada task scheduling performance is important to the software developers of real-time DoD systems.
Current Ada tasking rules produce task scheduling results which are unpredictable and implemen-
tation dependent. A method to identify the underlying task scheduling algorithm used by a given
compiler would aid immensely in designing real-time systems with Ada. This thesis addresses
the development of a suite of Ada programs to reveal, for any Ada compiler, the underlying task
scheduling algorithm it uses. Research in this area should result in a compiler evaluation tool for
use by software developers to allow them to determine the scheduling algorithm used by a given

Ada run-time system.

1.1 Background

An Ada task is a programming entity that can be executed in parallel with other programming
entities or can be considered to be executed by a logical processor of its own. Due to their unique
timing requirements, “real-time systems are designed as a set of cooperating concurrent processes
(Ada tasks) using the Ada tasking model” (5:49). The Ada tasking model, which includes task
synchronization and rendezvous, along with the ‘DELAY’ statement and the ‘PRIORITY’ pragma,
is the basic framework for real-time system design in Ada. The general requirements of Ada task
scheduling, task rendezvous, and task synchronization processing are outlined in Chapter 9 of the

Ada Language Reference Manual (LRM), ANSI/MIL-STD-1815A (12:Sec 9).

1-1

Specific characteristics of the underlying algorithm used to implement task scheduling on a
given Ada compiler has been left to the discretion of the individual compiler vendo:;. Typically, the
task scheduling algorithm used by the compiler vendor is proprietary and not available to real-time
system designers. The efficiency of a real-time system, and the specific order in which tasks are
serviced can be significantly affected by the type of scheduling algorithm used. The ambiguity in
the Ada tasking requirements has led to several problems with the development and portability
of real-time systems using Ada. Therefore, a method of determining the type of task scheduling
algorithm used, would help Mission Critical Computer Resource (MCCR) software developers select

the compiler which is best suited for their particular application.

1.2 Statement of the Problem

As noted above, the problem is to identify the task scheduling algorithm used by a given
Ada run-time system. One possible method of determining a compiler’s underlying task scheduling
algorithm is to produce a test suite of Ada programs which, when compiled on a given compiler and
run, will reveal the scheduling algorithm used by that compiler. The objective of this thesis is to
determine whether it is experimentally feasible to design such a tool. If it is feasible, I will design
a sample testbed of Ada programs and demonstrate the ability to identify a compiler’s underlying

task scheduling algorithm.

There are several difficulties associated with developing an Ada task scheduling evaluation
tool. First, developing this tool may not be feasible. The question of feasibility centers around the
problem of capturing the task scheduling characteristics from the run-time system using high-level
programs. Next, if the extraction is feasible, determining which scheduling characteristics need to
be considered and which can be extracted using Ada may be difficult. Finally, the analysis, design,
and coding of any Ada program can be very difficult. The research into how an Ada run-time

system schedules tasks may be examining Ada task scheduling at a much lower level than any

1.2

previous research. But, the current literature clearly illustrates that the Ada tasking model has

some limitations which need further investigation.

1.3 Summary of Current Knowledge

The only construct provided in Ada to specifically designate the order for task execution is
the pragma PRIORITY static ezpression statement. However, this only provides control over task
execution when two tasks of different priority are awaiting execution. The static erpression is an
integer representing the priority such that a lower value indicates a lower degree of urgency. The

Ada LRM provides only the following rule with regard to task scheduling;:

If two tasks with different priorities are both eligible for execution and could sensibly
be executed using the same physical processors and the same other processing resources,
then it cannot be the case that the task with the lower priority is executing while the
task with the higher priority is not. (12:Sec 9,16)
Although this rule specifies that a higher priority task will run prior to a lower priority task when
they are both ready to run, there is no indication as to which task will execute first when the
two tasks have equal priority or have no priority defined. Additionally, there is no indication as
to whether a lower priority task which is executing should be interrupted when a task of higher

priority becomes ready. Finally, there is no indication as to which rendezvous will be executed first

when there are several tasks awaiting separate entry calls at an open alternative select statement.

As noted above, except for the PRIORITY rule, specific requirements of the underlying
algorithm used to implerent task scheduling on a given Ada compiler is left to the discretion of
the individual compiler vendor. There are many scheduling algorithms available for the compiler
vendor to choose. Since the specific order in which tasks are serviced can be significantly affected by
the scheduling algorithm used, the efficiency of a real-time system developed in Ada is significantly

impacted by the scheduling algorithm.

1-3

This ambiguity in the requirements for Ada task scheduling has led to several problems
with the development of real-time systems using Ada. Not all of the literature focuses on the same
problems, but the articles discussed later in chapter 2 identify several common problems. There are
two avenues of research which can be pursued to resolve the ambiguous Ada tasking environment
problem: (1) operate blindly, without any knowledge of a compiler’s task scheduling algorithm,
and identify problem work-arounds, or (2) detect the underlying task scheduling algorithm and
select the compiler which best supports the scheduling requirements of the real-time system under

development.

1.4 Assumptions

The following assumptions were made at the onset of this thesis effort. First, I assumed
that specific information about the underlying task scheduling algorithm used by at least one Ada
compiler would be available. With this information, I planned to validate the testbed of Ada
programs for at least that one case. Without the information, I would not be assured that the

testbed worked properly.

Additionally, after the initial research into the characteristics of scheduling algorithms, I
decided to narrow down the scope of this detection effort. Therefore, | made the assumption that
most Ada compilers probably use one of the simple, well-known scheduling algorithms (commonly

used in operating systems) for task scheduling.

1.5 Scope of the Thesis Project

There are many different scheduling characteristics and parameters which can be included
in a given scheduling algorithm. Initially, I tried to look at all scheduling algorithms, including
those which are applicable to real-time processing. But, this included many complex algorithms

which were not very likely candidates for use in Ada run-time systems. So, the scope of this

1-4

project’s software development efiort {i.e. the testbed) was iimited to simple scheduling algorithms
with characteristics which are detectable by running a high-level Ada program. Therefore, to
demonstrate the feasibility of this approach, the final testbed was limited to only differentiating

between one of five basic scheduling algorithms.

It is clear from the literature that further research into scheduling algorithms and possible
changes to the Ada rules are currently being pursued to improve Ada’s real-time efficiency. Short
of developing any new algorithms or changing the Ada language rules, providing a tool to identify
the underlying task scheduling algorithm used by an Ada run-time system will be an asset to the
real-time system designer. Successful completion of this thesis research should lay the groundwork

for providing such a tool.

1.6 Standards

The Ada Language Reference Manual, MIL-STD-1815A, was used and referenced throughout
this research. This standard identifies the constructs and rules of the Ada language. Also, it is the
standard by which compiler vendors develop Ada compilers and by which the Ada compilers are

validated.

1.7 Approach/Methodology

First, I refined the problem definition through an in-depth literature search. This research
focused specifically on run-time scheduling characteristics which can be detected by a high-level
language. Then, I identified a set of test cases which could be used to reveal the scheduling
algorithm characteristics exhibited by a run-time system. Next, [defined and analyzed the software
requirements. Then, I designed, coded, and tested the Ada programs for the testbed. Finally, I
validated the testbed with three Ada compilers for which the underlying task scheduling algorithm

was known.

1-5

1.8 Thesis Organization

In chapter 2 of this thesis, a detailed literature search is provided. This literature search
includes a look at real-time scheduling problems with Ada and an overview of the work being done
to resolve those problems. It also includes an overview of scheduling algorithm research, a discussion

of scheduling algorithm characteristics, and the description of several scheduling algorithms.

In chapter 3, [have documented the analysis which I used to determine what requirements
were necessary to detect the task scheduling characteristics of an Ada run-time system. The task
parameters which were controled, as well as the scheduling characteristics which were measured, are
also identified. Then, the test cases which incorporate different combinations of the task parameter

relationships are discussed. Finally, the execution result predictions are listed and discussed.

Chapter 4 describes the design and development of the Ada programs which model the test
cases. This, includes a discussion of the Ada constructs which were used and the overall structure
of the parent programs. In chapter 5, I provide the results of executing the test case programs an
several Ada compilers. The results of the execution on each of the five compilers is tabulated. and
the analysis of these results produced from each compiler is discussed. Finally, in chapter 6, the

conclusions reached as a result of this research are provided and some reccomendations for further

research in this area are made.

[l. Literature Review

The first part of this review addresses current research in the problems associated with the use
of Ada tasking constructs. Fundamental real-time scheduling requirements, the limitations encoun-
tered with Ada providing these requirements, some methods used to investigate these limitations.
and some suggested work-arounds are discussed in the first part. The second part of this review
addresses task scheduling algorithm characteristics. It describes the common task scheduling pa-
rameters, the available scheduling algorithms, and the parameters which should be measurable for

an Ada run-time system.

2.1 Current Research Observations of Ada Task Scheduling

2.1.1 Real-Time Scheduling Requirements. There are several fundamental requirements of a
real-time programming language. To facilitate proper scheduling in real-time system design, Dennis
Cornhill identified the need for an integrated approach to critical system resource management
to avoid missed deadlines or underutilization of resources; a predictable scheduling algorithm; a
scheduler which manages both periodic and aperiodic jobs, as well as jobs with stochastic execution
times; and a preemptive scheduler (8:34-35). Douglass Locke has also pointed out that the run-time
environment should utilize minimal overhead for resource allocations, have predictable response

times, and have modifiable priorities (22:51-52).

In the articles noted above, the authors described why their identified requirements are es-
sential to real-time processing and how Ada falls short of satisfying these requirements. While the
identification of an Ada run-time system’s task scheduling algorithm will not help satisfy all of the
requirements noted by Cornhill and Locke, it will aid in predicting task scheduling and response
time, determining the types of jobs which the scheduler can manage, and identifying whether the
scheduler is preemptive. To design effective real-time systems, software design engineers need to

know how the run-time system schedules tasks for execution. This is necessary to understand which

e

[

real-time scheduling requirements are being satisfied by the run-time system, and which need to be

satisfied through the application software.

2.1.2 Specific Ada Limatations. There are several limitations associated with using Ada for
real-time system design. These limitations have been identified as priority inversion, nondeter-
ministic task execution, difficult execution of preemptive scheduling, and the lack of a real-time

executive. Each of these limitations are discussed below.

Priority inversion is a condition where low priority tasks are allowed to needlessly block higher
prinrity tasks. The occurrence of priority inversion in Ada programs was identified by several
authors as a significant limitation to designing real-time systems with Ada (4:8) (9:30) (19:53)
(21:39). An example of this would be when there is a server task of priority Ps servicing a set of
consumer tasks with priorities Py through Py, where Py is the lowest consumer priority and Py is
the highest. In the cases where Ps = ProrPs = Py, the servicing of consumer-server rendezvous
would be nondeterministic due to Ada's priority rule. Therefore, the two cases where Ps < P, or
Ps > Py are used to illustrate priority inversion. In the first case, if the server task is not ready to

accept the request and there are other consumer tasks ready to execute, a high priority consumer

task may be blocked while calling the server task. In the second case, a high priority consumer
task which has just become eligible for execution may be preempted by the server task which is
doing work for a low priority consumer task (9:31). In both cases, the task which is started by the

scheduler may not be the one with the highest priority of the tasks which are ready to run.

Dennis Cornhill suggested the priority inheritance scheme as a work-around to prevent priority
inversion. With this scheme the priority of the clients waiting for service is passed on to (or inherited
by) the server task. In this way, “priority inversion can be avoided if the server always selects
for service the highest priority waiting client and inherits its priority from its waiting clients as
well”(9:32). But, in Ada, since there is only a single level of priority passing during a rendezvous,

the server only inherits the priority of the first-level client if that client’s priority is higher than

that of the server. The server doesn’t inherit the priority of any second-level clients which are
waiting (9:32). Thus, the rules of an Ada rendezvous illustrate that Ada’s limited form of priority

inheritance is not adequate to prevent priority inversion.

The authors of three separate articles revealed that Ada exhibits nondeterministic task ex-
ecution behavior because of the way it handles open alternative select statements and because of
its First In/First Out (FIFO) entry call queuing (4:8) (21:39) (23:49). Since there are separate
queues associated with each entry call, there are several queues associated with an open alternative
select statement. The priority of each queue corresponds to either the priority of the task in which
the entry call is located, or the priority of the calling task, whichever is higher. The queuing of
individual entry calls is FIFO when all tasks are allocated with the same priority, but the selection
of which queue to service first at an open alternative select statement is not specified. Thus, when
all tasks are allocated with the same priority or without any priority, the results are unspecified by
the Ada LRM and implementation-dependent (1:43) (8:34). This results in the system designer’s

lack of control over the execution of several time critical tasks.

Another problem, somewhat related to the priority inversion problem, is the difficulty in
executing preemptive scheduling within the Ada run-time environment. Since Ada requires all
instances of the same task type to have the same priority, and that priority cannot change dy-
namically, preemptive scheduling is difficult without the costly overhead of special priority passing
paradigms (5:50) (1:43,45). In some Ada run-time systems, a Round-Robin (time-sliced) algorithm
may actually be employed for scheduling task execution. Thus, a given Ada run-time systems may
already incorporate a preemptive algorithm at the lowest level of task scheduling. If this type of
scheduling algorithm could be detected, other types of more sophisticated preemptive scheduling

may be possible at the overall system level.

In An Assessment of the Overhead Associated with Tasking Facilities and Task Paradigms in

Ada, Thomas Burger identified what he considers to be Ada’s key limitation by stating:

2-3

Since Ada does not include a real-time executive, task activation and termination are
not accomplished via programmer written executive service requests. Task activation
and termination in Ada is a part of the tasking model semantics, and is performed
automatically based on an elaborate set of rules. (5:51)
The task scheduling portion of this ‘elaborate set of rules’ consists of the single rule noted above,
and the ambiguity of this rule has already been discussed. Without a real-time executive, the real-
time system developer must try to simulate a real-time environment using the components of the

Ada tasking model. Using the Ada tasking model forces the developer to rely on the Ada run-time

system to schedule task execution.

Since Ada’s task scheduling rule is so ambiguous and the timing overhead associated with
tasking is so excessive, an efficient real-time system cannot be designed using Ada as it is currently
defined. This problem may be overcome if the designer can identify and understand the task
scheduling algorithm being used by several Ada run-time systems, then select the appropriate
Ada compiler and design the real-time system accordingly. Additionally, if the underlying task
scheduling algorithm is known, the designer may be able to avoid priority inversion, eliminate
nondeterministic task execution, and more readily design preemptive scheduling systems in Ada.
Since Ada's rules for task scheduling are so ambiguous, an efficient real-time system cannot be
designed using Ada unless the designer can identify and understand the task scheduling algorithm

being used.

2.1.3 Previous Attemps lo Solve Ada’s Limitations. In 1987, Dennis Cornhill identified a
stabilized rate monotonic algorithm as a potential way of facilitating real-time system design,
but pointed out that curtent Ada rules prevent the use of this type of algorithm. With this
algorithm “certain high priority tasks run for limited periods only. When this time period elapses,
if the execution has not been completed, the job must be preempted by lower priority jobs for
another well defined length of time” (8:34). Thus, the stabilized rate monotonic algorithm uses

information about job importance, periodicity, and average and worst case execution times for

2-4

scheduling decisions. In order to permit use of hard deadline scheduling algorithms (i.e. the
stabilized rate monotonic algorithm), Cornhill concluded that two areas of Ada need to be changed.
First, all run-time scheduling operations should consider a task’s priority. Second, “constraints on
the definitions for priority and the language’s scheduling policy should be relaxed” (8:35-37). Once
again, if the underlying task scheduling algorithm is known, designing hard deadline scheduling
systems with Ada may be feasible without changing the language. However, software which is

based on a particular algorithm may not be portable.

While leading the Tasking session at the 1987 ACM International Workshop on Real-Time
Ada Issues, Cornhill summarized the session with several recommendations. First, he suggested
that deadline scheduling problems be addressed in the 9X revision to Ada. Next, he suggested that
a clarification be issued by the Ada Language Maintenance Panel to eliminate the synchronization
point of the ‘ACCEPT’ statement for an interrupt. And finally, he noted that built-in priority

management packages should be provided by compiler vendors (7:32).

At the same workshop, Gary Frankel identified four special concurrency paradigms (moni-
tor/process structure, asynchronous message passing, interrupt procedures, and event signaling) to
make Ada tasking useful. Using these special case paradigms, Frankel claimed that “Ada tasking

can be made as efficient as any other method of concurrency programming” (14:47-48).

Several proposed environments were presented at the 1988 ACM International Workshop on
Real-Time Ada Issues and published in Ada Letters, 1988 Special Edition. In A Testbed for Inves-
figating Real-Time Ada Issues, Mark Borger discussed the Software Engineering Institute’s (SEI)
‘Ada Embedded Systems Testbed’ project which they used to “provide a real-time laboratory envi-
ronment for conducting experiments using Ada and investigating real-time Ada issues” (4:7). Using
this testbed, researchers at SEI investigated some promising real-time scheduling algorithms that
were developed to overcome Ada’s aperiodic task servicing problem. Specifically, they looked at

the rate monotonic algorithm, a priority inheritance based scheduling algorithm, and a deferrable

2-5

server algorithm. Implementation of these algorithms revealed that researchers need to look at so-
lutions which are either “constrained by current Ada implementations” or “involve legal extensions
or allowable interpretations of the language semantics” (4:7-10). Although the researchers at SEI
looked at high-level scheduling algorithms, it may be possible to use a similar testbed to identify

the low-level task scheduling algorithm used by an Ada run-time system.

Two other articles presented at the 1988 ACM Workshop addressed the rate monotonic al-
gorithm. In his article, John B. Goodenough, another researcher at SEI, showed that the basic
priority inheritance and priority ceiling protocols (both rate monotonic algorithms) corrected Ada’s
unbounded priority inversion problem. Although the priority ceiling protocol seemed to perform
well, researchers at SEI are trying to extend the protocol and verify its utility (16:24). In a separate
article, Douglass Locke described an experiment using the rate monotonic algorithm in a modified
Ada run-time environment which “confirmed earlier theoretical analysis that priority inheritance

can provide substantial benefits” (21:40-42).

In work totally unrelated to the 1988 ACM Workshop, Jane W.S. Liu proposed an Imprecise
Computation Approach to improve on the rate monotonic algorithm’s schedulability and processor
utilization during fluctuating system loads. Liu suggested that the deficiencies in Ada’s existing
priority mechanism could be corrected by introducing data structures (i.e. tables of repetition rates
and deadlines) at link-time which cooperate with the run-time system and have little impact on

the existing language definition (20:33-34).

The discussion above reveals that most of the research done thus far has focused on Ada’s
limitations with respect to real-time design, on work-arounds to use Ada for real-time design,
and on suggestions for changing Ada to improve it’s real-time capabilities. These work-arounds
appear in the form of high-level algorithms implemented using the Ada tasking model. But, I have
found no evidence of research in the area of task scheduling algorithm detection for Ada run-time

systems. Since there are many possible algorithms which could be used by an Ada run-time system

2-6

for task scheduling, detection of the specific scheduling algorithm may be impossible if the scope
of detection includes all possible algorithms. But, it seems reasonable to narrow this scope to
a few simple, well-known algorithms which are the most likely to be used by an Ada compiler.
With this restriction, it may be possible select the Ada compiler which exhibits characteristics of
the scheduling algorithm most appropriate for a given real-time application. That concept is the

thrust of this research effort.

2.2 Scheduling Algorithm Detection Research

According to Coffman and Kleinrock, “the goal of scheduling algorithms is to provide the
population of users with a high grade of service (rapid response, resource availability, etc.) at the
same time maintaining an acceptable throughput rate” (6:11). Although their statement was made
with regard to computer scheduling in general, it also applies specifically to task scheduling within
an Ada run-time system. However, within an Ada run-time system, the users are represented by
the individual tasks awaiting execution and an acceptable throughput rate is achieved when all

tasks are serviced in a manner such that all deadlines are met.

When designing an Ada program to support real-time applications, the designer has to be
concerned with time-critical processes (TCPs). According to Omri Serlin, TCPs are “computational
procedures bound by hard deadlines”, such that failure to meet the deadline “results in an irrepara-
ble damage to the computation” (24:925). When dealing with real-time applications, an efficient
scheduling algorithm is one that “guarantees to each TCP sufficient processor time to complete its
task before its deadline, while minimizing forced idle CPU time” (24:925). Scheduling algorithms of
this nature are called Hard-Deadline scheduling algorithms. Typically, Hard-Deadline algorithms
are much more complex than standard scheduling algorithms and are not likely to be implementea
as an Ada run-time system’s algorithm. When such an algorithm is required for a real-time system,

it is implemented on top of the Ada run-time systems using special tasking paradigms.

In general, an Ada compiler may be required to produce a run-time system which controls the
scheduling of tasks on multiple processors. However, this is only the case when there are parallel
processors available in the hardware architecture. Though this is becoming more commonplace in
large and medium scale co 1puter systems, it is not the case with small and embedded computer
systems. Most DoD embedded real-time systems have been designed on single processor based
architectures (i.e. M68000, Z8000, and MIL-STD-1750A). Therefore, the following discussion will

focus on scheduling algorithms for single processor systems without hard deadlines.

In his book, 4n Introduction to Operation Systems, Harvey Deitel identifies the general ob-

Jectives of a scheduling algorithm as:

o Provide fair treatment to all waiting processes (or tasks),

¢ Maximize CPU throughput,

e Provide predictable response,

o Reduce process scheduling overhead,

e Balance system resource utilization,

o Provide a reasonable balance between system response and utilization,
o Avoid process starvation (or indefinite postponement),

e Acknowledge process priorities, and

e Provide gracef:l degradation (10:250-251).

These objectives are equally applicable to Ada run-time systems. The detection of an Ada run-
time system’s scheduling algorithm is primarily concerned with the degree to which the algorithm
satisfies the ‘predictable response’ objective. If a given algorithm has a predictable response which
distinguishes it from other algorithms, then the execution of a predetermined set of tasks can be

observed and analyzed to detect the algorithm used.

2-8

2.2.1 Scheduling Algorithm Characteristics. Although the successful achievernent of some
objectives noted above may be very subjective, the achievement of others can be measured by
looking at certain characteristics. First, to be consistent throughout the remainder of this thesis, the
term *task’ will be used in lieu of the terms ‘process’ or ‘job’. The followingscheduling characteristics

are typically measured (for a given task i) to compare algorithm performance:

e Arrival time (A;) (the time when the task initially arrives and is ready to execute],
e Start time (S;) [the time when the task actually begins execution],
¢ Finish time (F;) [the time when the task actually finishes execution],

o Service time required (C,) [the actual CPU service time required for the continuous execution

of a task without interruption},

e CPU burst time (4;) {the continuous burst of CPU service time required between I/O requests

or other interrupts, 3.(5;) = C],
¢ CPU utilization [for an algorithm processing n tasks] (Totaltime/ Z;a Cj).
o System throughput [Number of tasks processed per unit time] (n/Totaltime),
o Process turnaround time (F; — A;),
* Process response (or completion) time (T; = F; — S;),
e Process waiting time (W;) = T; - C;),

o Penalty ratio (P = t/C;, where “t is time in execution before task i can leave the ready list

because it will either finish or will need to wait for something ”(13:17)), and

¢ Response ratio (R = C;/t (13:17)).

The application of a specific scheduling algorithm to a given set of tasks should produce a set

of measurable characteristics. Although not necessarily unique for a single set of tasks, applica-

2-9

tion of the algorithm to a selected suite of task combinations may produce a set of characteristic

measurements which are unique for that algorithm.

2.2.2 Scheduling Algorithm Descriptions. Prior to identifying the requirements for a suite of
test cases to detect the scheduling algorithm used by a given Ada run-time system, the scheduling
algorithms most likely used in Ada run-time systems will be identified. As noted earlier, due
to the complexity and costly overhead associated with hard-deadline algorithms, these will not be
considered as candidates. Additionally, based on the assumption that most DoD embedded systems
are single-processor architectures, multiprocessor scheduling algorithms also will not be considered.
Thus, the focus of this research will be on simple, well-known, single-processor scheduling algorithms
such as First-Come-First-Serve (FCFS), Round-Robin (RR), Shortest-Job-First (SJF), Priority,
and Highest-Penalty-Ratio-Next (HPRN), and Multi-Level Feedback. Only those which have a

high potential of being implemented as part of an Ada run-time system will be checked for.

2.2.2.1 First-Come-First-Serve (FCFS). This scheduling algorithm is characterized
by the First-In-First-Out (FIFO}) serving queue. Tasks are lined up in a ready queue as they arrive.
This is the simplest scheduling algorithm to write and understand. However, its performance 1s
often quite poor. The average waiting time is generally not minimal, as a shorter task may have
to wait quite some time before execution if a longer task arrives first. Additionally, the average
waiting time may vary substantially depending on the sequence of tasks awaiting execution. This
is a non-preemptive algorithm; thus, once a task is started, it will run to completion or until it is

blocked (i.e. due to an I/O request, a delay, or a rendezvous).

While the Ada LRM specifies that each entry call queue is required to process calls in the
order of arrival (i.e. a FIFO queue) (12:Sec 9,9), there is no such requirement for scheduling task
execution. Although not the most efficient in terms of average waiting time; due to its simplicity,

this may be the algorithm of choice for some Ada compiler vendors.

2-10

2.2.2.2 Round-Robin (RR). A scheduling algorithm in which each task is allocated a
slice of execution time on the CPU is called Round-Robin (RR). In this algorithm., as tasks arrive
they are placed on a ready queue in a FIFO fashion. But, when they get to the front of the
queue, they are only permitted a limited time for execution. If they complete within that time,
they exit the queue; however, if they block for I/O or need more CPU time they are interrupted
and placed at the back of the ready queue. Thus, RR is a preemptive algorithm where the ready
queue is treated as a circular queue, and each uncompleted task has a short turn at execution each
time the scheduler cycles through the queue. A shorter task may complete during the time slice
and exit, whereas a longer task may require several trips through the queue before completion.
The performance of this algorithm depends on the designated time slice. To function efficiently,
approximately eighty percent (80%) of the cpu bursts should be shorter than the designated time
slice. If the time slice is too large, RR degenerates into FCFS because each task completes within
one time slice. And if the time slice is too small, the context switching overhead swamps the CPU

(25:166-168).

As noted earlier, with regard to task execution, the Ada LRM states:

The execution of a program that does not contain a task is defined in terms of a
sequential execution of its actions, ... These actions can be considered to be executed
by a single logical processor. Tasks are entities whose executions proceed in parallel in
the following sense. Each task can be considered to be executed by a logical processor
of its own. Different tasks (different logical processors) proceed independently, except
at points where they synchronize. (12:Sec 9,1)
Considering the requirement noted above, in order for an Ada run-time system to execute tasks
in parallel (or give the impression of that more than one processor was being used), some type
of RR scheduling algorithm would seem most appropriate on a single processor system. This is

particularly brought out by the Ada LRM statement that ”parallel tasks (parallel logical processors)

may be implemented on multicomputers, multiprocessors, or with interleaved execution on a single

2-11

physical processor” (12:Sec 9,1). Therefore, RR should have a high probability of use in Ada

run-time systems.

2.2.2.3 Shortest-Job-First (SJF). There are two versions of the SJF algorithm, a static
version and a dynamic version. The static SIF algorithm requires some prior knowledge of a task’s
projected CPU service time C; requirement. Using this information, the static SJF algorithm sorts
a task set based on increasing C; and executes them in that order. The static SJF algorithm would
most likely be used for (long-term) scheduling in a batch environment where task service time

requirements are known prior to execution.

On the other hand, the dynamic SJF algorithm requires no prior knowledge of C; require-
ments. This version of SJF puts new task arrivals at the front of the ready queue to execute as
soon as the currently running task is blocked. When its turn comes up, the task is permitted to run
until a block occurs for an [/O request, a rendezvous, a delay, or some other task generated reason.
After the task is blocked, but prior to placing it back on the ready queue, the scheduler projects
the next CPU burst 3,4 requirement based on the most recent CPU burst time 3, used prior to
blocking. After each cycle through the ready queue, the algorithm sorts the remaining tasks based
on their projected 3,4, and executes the task with the shortest 3,4, first. In this manner, tasks
which are I/O intensive and only require small bursts of CPU processing are given priority over

CPU intensive tasks.

With either version of SJF, once a task is started it will run until it requests a block or until
it is finished. Thus, both the static and dynamic SJF algorithms are non-preemptive. This results
in a minimum average waiting time for a given set of tasks. However, SJF requires either prior
knowledge of a task’s required service time (i.e. C;) or the additional overhead associated with

predicting the next CPU burst (i.e. Fn41).

It’s not very likely that an Ada run-time system would be using either of these versions of SIF

for two reasons. First, there's no other requirement to provide any projection of a task’s expected

2-12

C;. And second, the overhead associated with predicting all of the tasks' 3,,, based on their most
recent 3, could be extremely high. But, it should be easy to detect because of the algorithm’s

characteristic minimum average waiting time.

2.2.2.4{ Priority. In this scheduling algorithm, each task has a priority associated with
it. When the tasks queue up awaiting execution, the tasks with the highest priority are always
placed at the head of the queue. Thus, the tasks with the highest priority are executed first.
Tasks of equal priority are scheduled using some default algorithm. The Priority algorithm is also
non-preemptive. The major problem with this algorithm is the possibility of indefinite blocking or

starvation of lower priority tasks where they don’t get an opportunity to execute.

The rules of Ada dictate that some level of Priority scheduling must be used when tasks have
a PRIORITY assigned. But, still there is no requirement that any specific algorithm be used to
schedule tasks with equal priority. Thus, a Priority algorithm which degenerates to some default

algorithm should be a prime candidate for use in Ada run-time systems.

2.2.2.5 Highest-Penalty-Ratio-Nezt (HPRN). Under the category of non-preemptive
scheduling algorithms, either long tasks are given an unfair advantage under the FCFS algorithm
or short tasks are given an unfair advantage under the SJF algorithm. According to Finkel, by
calculating a ‘penalty ratio’ and selecting the task with the highest penalty ratio for the next
execution, the scheduling of tasks becomes ‘fairer’ (13:24). The penalty ratio is calculated by
dividing the response time, T, (i.e. F; — S;) by t, where t is the time in execution before a task
can leave the ready list. According to Harvey Deitel, this amounts to assigning dynamic priorities
to the tasks based on the calculated penalty ratio (10:258). The disadvantage of this algorithm is
that it is more expensive to implement due to the required calculation of the penalty ratio for ail
tasks prior to executing a task. Additionally. a short task arriving immediately after a long task
has begun execution will still have to wait to start. It’s very unlikely that this algorithm is used in

Ada run-time systems because priorities are static and the overhead may be too costly.

2-13

2.2.26 Multi-Level Feedback Scheme. This algorithm employs several queues for tasks
which are awaiting execution. The algorithm is defined by the number of individual queues, the
scheduling algorithm for each queue, the criteria required for a task to move from one queue
to the next higher queue, the criteria to move a task to the next lower priority queue, and the
initial assignment criteria. Each queue has a different priority and the queue in which a task is
placed is determined by the cause of the most recent execution interrupt. Any newly arriving task
1s allowed to preempt existing tasks until it has been given an amount of CPU time equivalent
to that used by existing tasks. The multi-level feedback algorithm is an adaptive mechanism
which responds to changes in tasking requirements, but requires considerable overhead to operate

effectively. Thus, this type of algorithm is very unlikely to be implemented in Ada run-time systems

(10:259-261)(13:24-25)

2.3 Summary

This review has provided some basic scheduling algorithm information which will be used to
identify the requiremnents for the investigation of Ada task scheduling. Current research into real-
time scheduling requirements and the limita‘ions associated with using Ada for the development
of real-time systems reveal the need for changes to Ada tasking rules. With the current ambiguous
Ada tasking rules, different implementations of Ada may produce different results. It is clear from
the literature that further research into scheduling algorithms and possible changes to the Ada rules
are required to improve Ada’s real-time efficiency. The current literature also reveals that some
methods are being investigated to overcome the Ada limitations mentioned. Short of developing any
new work-arounds or changing the language rules, an alternate approach might be to determine the
task scheduling algorithms used by a set of available Ada compilers, and then select the compiler
which is best suited for the job at hand. In support of this approach, the literature review provided
a discussion of scheduling algorithm characteristics. This provides the background for the possible

development of a testbed of Ada programs to detect the underlying task scheduling characteristics

2-14

exhibited by a given Ada compiler. Based on the information provided, and in order to limit
the scope of the development effort, the test suite will only check for the FCFS, RR, Static SIF,

Dynamic SJF, and Priority algorithms. The next chapter provides a discussion of the requirements

analysis used to develop the test suite of Ada programs.

2-15

III. Requirements Analysis for Ada Task Scheduling Detection

The detection of the scheduling algorithm used by a run-time system will require the mea-
surement of one or more algorithm characteristics to distinguish among the five algorithms. There
are several approaches which are used to predict algorithm performance. When the task parameters
are dynamic, queuing models are used to predict the performance of scheduling algorithms. Several
authors have used queuing theory to evaluate scheduling algorithm performance on dynamic task
sets (18, 17, 24). On the other hand, when the task parameters are static, an evaluation method
known as deterministic modeling can be used. Several authors have used flow-time analysis and
Gantt charts to predict the sequence of task execution for a given scheduling algorithm known
apriori (15, 13, 25). The scheduling methods defined in Chapter Il can be described using the
deterministic approach, therefore the basie for the development of the Ada testbed will be the

same.

This requirements analysis will discuss the task parameters and scheduling algorithm charac-
teristics which can be used to distinguish among the five algorithms under investigation, and the

expected results for test cases which are used to model different parameter relationships.

3.1 Scheduling Algoritam Characteristics/Parameters

In Deterministic Processor Scheduling, M.J. Gonzalez, Jr. used Gantt charts and flow-time
measurement to analyze several single-processor algorithms (15:179-181). In his book, An Operating
Systems Vade Mecum, Raphael Finkel used Gantt charts along with known task parameters to
illustrate and compare the results of applying vario@ algorithms to a given set of tasks (13:20-
27). With respect to task scheduling analysis, a Gantt chart is a tabular representation of task
execution during a sequence of predetermined time increments. Flow-tiine analysis is concerned
with the sequence of, and relationship between, the start and finish times of the tasks. Since the

execution sequence for a given task set will vary depending on which scheduling algorithm is used

31

and how the parameters of the tasks are related, representation of the expected execution results

using a Gantt chart requires prior knowledge of one or more task parameters.

Initially, I believed that the expected Gantt chart produced by various algorithms for a given
task set could be predicted if the arrival time (A;), service time (C;), and priority (P;) of the tasks
were known. Although many examples of Gantt chart analysis contain several tasks within the
given task set, algorithm detection may be possible with only two tasks in the task set. But, in
order to do it with only two tasks, (A & B), all the possible equality relationships between A, &
Ag, Ca & Cpg, and P4 & Ppg for the two tasks had to be observed. Twenty-seven test cases cover
each combination of these parameter relationships for two tasks. A listing of the test cases, along

with the corresponding parameter relationships for the two tasks, is provided in Table 3.1.

Originally, I thought that these test cases would be sufficient to detect RR, FCFS, SJF, and
Priority. Later, [realized that there was a distinction between the results predicted for the Dynamic
SJF algorithm and the Static SIF algorithm. This distinction, along with other problems, resulted
in the need for another special test case which will be discussed later. It wasn’t until after the
Ada programs which modeled these twenty-seven test cases were executed, and the results of the
execution analyzed, that I discovered these test cases could not detect a Dynamic SJF algorithm.
Thus, the term SJF will be used to refer to the Static SJF algorithm until the special test case is

presented.

The A,, C;, and P; task parameters were selected for use in the test cases for the following
reasons. First, if the task arrival times for two tasks are known in advance, this knowledge can be
used for detecting a FCFS algorithm. Since a FCFS algorithm executes the task with the earlier
arrival time prior to the other task, the resulting execution sequence and the start & finish times

can be predicted.

If the task service times are also known in advance, a better approximation for the expected

start and finish times is also possible. In order to more accurately predict start and finish times, the

[Scheduling Algorithm Detection Test Cases)
Test Case | Service Time | Arrival Time Priority
1 Ca=Cp Aq = A Py =Pp
2 Ca=Cp As=Ap P, > Pg
3 Ca=Cp As = Ap P4 < Pg
4 Ca=Cg As < Ap Py = Pg
5 Ca=Cpg Ax < Ap Py > Pg
6 Ca=Cpg Ajx < Ap P4y < Pg
T Ca=Cpg Aa > A Py = Pp
8 Ca=Cpg Aax > Agp Py > Pg
9 Cs4=Cpg Ap > A Py < Pp
10 CA)CB AAzAB PA=PB
11 Cs>Cpg Aax = Ap P4 > Pp
12 Cs>Cp Aa = Ap P4 < Pg
13 Ca>Cp Aa < Ap Py, = Pg
14 Ca>Cg Aa < Ap P4y> Pg
15 Ca>Cp Aa < Ap Py, < Pg
16 Ca>Cp Aax > Ap P4y = Pp
17 Cs>Cpg Aax > A Ps > Pg
18 Ca>Cp Aq > AB P4 < Pg
19 Ca<Cp Ags = Ap Py, = Pp
20 Ca<Cp Ajp = Ap Py > Pg
21 Ca<Cp A4 = A P4 < Pp
22 Cs<Cp Apx < AB Py, = Pp
23 Ca<Cp Aps < Ap P4 > Pp
24 Ca < Cpg Aa < Ap P4 < Pg
25 Ca<Cp Ap > AB P4 = Pp
26 Ca <Cp Aa > A P4 > Pg
27 Ca<Cp Aa > AB P, < Pg
where C is the service time, A is the arrival time, and P is the priority.

Table 3.1. Algorithm Detection Parameter Relationships for Test Cases 1 thru 27

service time inequality relationships identified in Table 3.1 were converted to equality relationships.
The relationship 2C 4 = Cp was used to obtain the C4 < Cp relationship, and C4 = 2Cpg was used
to obtain the C4 > Cpg relationship. The doubling of service times for the equality relationship
was arbitrarily selected to simplify the start and finish time predictions (and analysis). The prior
knowledge of task service times also aids in the detection of the SJF algorithm. Since a SJF
algorithm executes the task with the shorter service time prior to the other task, the resulting
execution sequence can be identified and a close approximation to start and finish times can be

predicted.

3-3

If the priorities of two tasks are known in advance, detection of the Priority algorithm should
be possible. Since a Priority algorithm executes the task with the higher priority before the other
task, the resulting execution sequence can be identified and a close approximation to the start and

finish times can be predicted.

Finally, if a RR algorithm is nsed for task scheduling, the two tasks will take turns at exe-
cution. Once again, if the arrival times and service times of the two tasks are known in advance,
execution sequence and a fair approximation of start and finish times can be predicted. Although
accurate predictions for start and finish times are not possible without prior knowledge of the time
slice (T'S) used by the RR algorithm, the relationships between the task start and finish times is

possible.

Even though some of the test cases were functionally equivalent to each other (just a renaming
of tasks), they were kept for purposes of cross-checking their expected res .s. I also realized that
some of the test cases could produce the same results for two or more algorithms. These test cases
were kept because the results of two such test cases may be intersected to single out which of the
algorithms under investigation is possibly being used. For example, if the results of one test case
indicates that either FCFS or SJF was used, and the results of another test case indicates that
either FCFS or Priority was used; then the intersection of these results reveals that FCFS was used.

Therefore, all of the test case were kept to maintain a more complete test suite.

Since the overall objective was to analyze the execution results of Ada programs which mod-
eled these test cases, the next step was to predict the execution results of each test case executing
under the RR, FCFS, SJF, and Priority algorithms. The prediction of expected results for the test

cases is discussed in the next section.

3.2 Predicled Ezecution Results for the Test Cases

The expected result of executing a given test case under a known scheduling algorithm can
be described by a characteristic set of start (S4 and Sg) and finish (F4 and Fg) times, along with
a corresponding Gantt chart. As noted earlier, a Gantt chart can be used to predict the expected
execution sequence for a set of tasks running under a given scheduling algorithm. The Gantt charts
for each of the twenty-seven test cases, executing under four scheduling algorithms, are shown in
Tables A.l through A.30 of Appendix A. The four algorithms represented are Round Robin (RR),

First-Come-First-Serve (FCFS), Shortest-Job-First (SJF) [actually static SJIF}, and Priority.

Ideally, a single test case should have expected results which are unique for each scheduling
algorithm. Examination of the Gantt charts provided in Tables A.1 through A.30 of Appendix
A indicates that none of the test cases appear to be ideal in this respect. The Gantt charts are
only of limited use because they do not accurately reflect the time segments, but they do provide
some insight into which algorithms are detectable by a given test case. The supplemental flow-time
analysis will provided additional insight when presented later. The following discussion highlights
some of the observations which can be made from the Gantt charts. The predicted Gantt charts
for test cases 1, 4, 7, 10, 16, 19, 22, and 25 indicate that these test cases should be useful in
distinguishing RR from the other algorithms. The predicted Gantt charts for test cases 6, 8, 15,
17, 24, and 26 reveal two sets of execution sequences. One sequence indicates that either RR or
Priority was used for scheduling, while the other sequence reveals that either FCFS or SJF was
used. Further flow-time analysis should distinguish between RR and Priority, but not necessarily
between FCFS and SJF. All other Gantt charts contain predicted execution sequences which cannot

distinguish between any of the four algorithms.

The flow-time analysis produces the expected start and finish times for the execution of each
test case under the four algorithms. The predicted start and finish times for each of the twenty-seven

test cases are summarized in Tables 3.2, 3.3, and 3.4.

3-5

Test | Parameters RR FCFS SJF Priority
Case
1 S4=0 o TS S4=0 o C Spg=0 o C S54=0 oc C
Ca=Cg 56=TS oc0 Sg=C or0 Sg=C o0 Sg=C « 0
Ajx = Ap Fa=2C =TS ot2C | Fg=C oc2C | F4=C ovr2C | F4 =C o 2C
PA=P3 F3=QC or2C =TS FB=QC o C F5=2C o C FB=QC or C
2 Sa=¢0 Sa=0 Sa=0 S4=0
Ca=Cg Sg=C Sg=C Sg=C Sg=C
Aa = Ap Fa=C Fa=C Fa=C Fa=C
Py > Pp Fg=2C Fg=2C Fg=2C Fg =2C
3 SA=C SA=C SA=C SA=C |
Ca=Cpg Sg=0 Sg=0 Sg=0 Sp=0
AA=AB FA=QC FA=QC FA=2C FA=2C'
P4 < Pg Fg=C Fg=C Fg=C Fg=C
4 Sa=0 S4=0 Sa=0 S4=0
Ca=Cpg Sg=TS Sg=C Sp=C Sg=C
Aa < Ap Fy,=2C-TS Fa=C F,=C Fa=C
Py = Pp Fg=2C Fg=2C Fg =2C Fg=2C
5 Sa4=0 Sa=0 Sa=0 Sa=
Ca=Cp Sg=C Sg=C Sg=C Sg=C
Aa < Ap Fa=C Fa=C Fa=C Fa=C
Py > Py Fg=2C Fg =2C Fg =2C Fg=2C
6 SA=0 5‘:0 SA=0 SA-—-O
Cas=Cpg Sp=TS Sg=C Sg=C Sp = Ap
Aqa < AB Fqp=2C Fa=C Fa=C Fy=2C
Py < Pg Fg=C+TS Fg=2C Fg =2C Fg=C+ Sp
7 Sa=TS Sa=C Sa=C Sa=C
Ca=Cpg Sp = Sg=0 Sg=0 Sg=0
Aa > Ap Fa=2C Fia=2C Fa=2C Fq=2C
Py = Pg Fg=2C-TS Fg=C Fg=C Fg=C
8 5A=TS SA=C 54=C SA=AA
Ca=Cpg Sg=0 Sp=0 Sg=0 Sg=0
Aa > Ap Fa=C+TS Fpa=2C Fa=2C Fa=C+ Ayx
Py > Pp Fg=2C Fg=C Fg=C Fg =2C
9 Sa=C Sa=C Sa=C Sa=C
Ca=Cpg Sg=0 Sg = Sg=0 Sg =
Aa > A Fq=2C Fa=2C Fa=2C Fia=2C
P, < Pg Fg=C Fg=C Fg=C Fg=C

S isstait time, F is finish time, and TS is the Time Slice if RR is used,

where C is service time, A is arrival time, P is priority,

Table 3.2. Predicted Execution Results for Test Cases 1 - 9

3-6

Test | Parameters RR FCFS SJF Priority
Case
10 SA=0 o TS Sa=0 o C Sa=C S4=0 o C
CAZQCB SBZTS or 0 53:20 or 0 SBZO SB=2C or 0
Aa = Ap Fqa=3C o 3C Fa=2C ot 3C | F =3C | Fq4 =2C or 3C
Py = Pg Fg=2C ot 2C~TS | Fg=3C or C Fg=C Fg =3C oo C
11 5,4:0 5420 SA——-O 5,4:0
Ca=2Cp Sg =2C Sp =2C Sg =2C Sg =2C
AA=AB FA=QC FA-_-?C FA=2C F,_—"ZC
Py> Pg Fg =3C Fg =3C Fg =3C Fg =3C
12 Sa=C Sa=C Sa=C Sa=C
Ca=2Cp Sg=0 Sg=0 Sg =0 Sg =0
Asa = A Fa=3C Fa=3C Fa=3C Fq4=3C
P4y < Pg Fg=C Fg=C Fg=C Fg=C
13 Sa=0 Sa=0 Sa=0 Sa=0
Ca =2Cp Sg =TS Sg =2C Sg =2C Sg =2C
Aa < Ap Fya=3C Fa=2C Fa=2C F,=2C
Py = Pg Fg =2C Fg =3C Fg =3C Fg =3C
14 5.4:0 SA=0 SA=0 5,4:0
Cas=2Cp Sg =2C Sg =2C Sp =2C Sg =2C
Aa < Ap Fa=2C Fa=2C F4=2C Fa=2C
P4 > Pg Fg =3C Fg =3C Fg = 3C Fg =3C
13 SA=0 SA-_—O SA=0 SA=0
Cs =2Cp Sg=TS Sp =2C Sg =2C Sp = Ap
- AaA < Ap Fy=3C Fa=2C FA=2C Fqa=3C
P4 < Pg Fg=C+TS Fg =3C Fg =3C Fg=C+ Sp
16 S4=TS Sa=C Sa=C Sa=C
Cas=12Cp Sp = Sp = Sg =0 Sg=0
Ax > Ap Fq=3C FA=3C\ F,=3C Fqa=3C
Ps = Pp Fg=2C-TS Fg=C Fg=C Fg=C
17 Sa=TS Sa=C Sa=C Sa = Aa
Ca=2Cp Sg=0 Sg=0 Sg =0 Sg=0
Aa > Ap Fa=2C+TS Fa=3C Fa=3C Fa=2C+ S5,
Py > Pg Fg =3C Fg=C Fg=C Fg =3C
18 Sa=C Sa=C Sa=C Sa=C
Ca=2Cpg Sg =0 Sg=0 Sg=0 Sg=0
Aa > AB Fpa=3C Fqa=3C Fa=3C Fa=3C
P4y < Pp Fg=C Fg=C Fg=C Fg=C

where C is service time, A is arrival time, P is priority,
S s start time, F s finish time, and TS is the Time Slice if RR is used,

Table 3.3. Predicted Execution Results for Test Cases 10 - 18

3-7

Test | Parameters RR FCFS SJF Priority
Case
19 Sa=0oTS Sa=0 o 2C Sa=0 Sa=0 o C
2C4=Cp Sp=TS o0 Sg=C o0 Sg=C Sg=C o0
Axa = A Fa=2C~TS ot 2C | Fp=C or3C Fa=C Fis=C or3C
P4 =Py Fg =3C or 3C Fg=3C or2C | Fg =3C | Fg =3C or2C
20 SA=0 SA=0 SA=0 SA=0
2C4 =Cpg Sg=C Sg=C Sp=C Sg=C
AA=AB FA=C FA=C FA=C FA=C
Py > Pg Fg =3C Fg =3C Fg =3C Fg =3C
21 5A=2C SA=2C SA=2C SA=2C
2C4=Cp Sg=0 Sg=0 Sg=0 £~ =0
AA=AB FA=3C FA=3C FA=3C rA:'3C
P4 < Pg Fg=2C Fg =2C Fg=2C Fg=2C
22 S4=0 S4=0 Sa=0 S54=0
2C4 =Cp Sg=TS Sg=C Sg=C Spg=C
Ajx < Ap Fa=2C-TS Fa=C Fa=C Fa=C
Py = Pg Fg =3C Fg =3C Fg =3C Fg =3C
23 SA=0 SA=0 SA=0 SA-—-
2C4=Cg Sg=C Sp=C Sg=C Sg=C
Aas < Ap Fa=C Fa=C Fa=C Fa=C
Py, > Pp Fg =3C Fg =3C Fg =3C Fp =3C
24 Sa=0 Sa=0 Sa=0 Sa=0
2C4 =Cpg Sg=TS Sg=C Sg=C Sgp = Ap
As < Ap Fa=3C Fa=C Fa=C Fa=3C
Py < Pg Fg=2C+TS Fg =3C Fg=3C | Fg=2C+ Sp
25 Sa=TS Sa=2C Sa=2C Sa=2C
2C4 =Cp Sg=0 Sg=0 Sg=0 Sg=0
Aaq > Ap FA'—'?C Fa=3C FA=3C Fqa=3C
Py = Pp Fg =3C Fg =2C Fg =2C Fg=2C
26 SA =TS SA =2C SA =2C SA = AA
2C4, =Cpg Sp=0 Sp=0 Sg=0 Sg=0
Aa > Ap Fa=C+TS Fa=3C Fa=3C Fa=C+ 5,
P4, > Pp Fg =3C Fg=2C Fg =2C Fg =3C
27 S4=2C Sp=2C Sa=2C Sa=2C
2C,=Cpg Sp=0 Sg=0 Sp=0 Sg=0
Aa > Ap F4=3C F,=3C Fa=3C Fpa=3C
P4 < Pg Fg=2C Fg =2C Fg =2C Fg=2C

where C s service time, A is arrival time, P s priority,

S is start time, F is finish time, and TS is the Time Slice if RR is used,

Table 3.4. Predicted Execution Results for Test Cases 19 - 27

Combining a flow-time analysis for each test case to the Gantt chart observations improved
the ability to distinguish between the four algorithms, but the distinction was still not as clear
as desiced. Still I felt that with twenty-seven test cases, it was possible to identify test case
combinations which would differentiate between the algorithms. So, I summarized the expected
results by grouping the task parameters together, and ordering the results by increasing start
times for task A. Through this summary, some distinction between the scheduling algorithms was

revealed. The summary which illustrates this distinction is provided in Table 3.5.

Parameters Test Cases that Reveal the Algorithms
Si | Sp Fa Fg RR FCFS SJF Priority
0 (TS |2C-TS 2C 1,4
3C 19,22
3C 2C 10,13
C+TS 15
2C+TS 24
2C C+TS 6
Ap 2C C+ Sp 6
3C C+ Sp 15
2C 4+ Sp 24
c C 2C 2,5 1,245,6 1,2,4,5,6 1,2,4,5
3C 20,23 | 19,20,22,23,24 | 19,20,22,23,24 | 19,20,22,23
2C 2C 3C 11,14 | 11,10,13,14,15 11,13,14,15 11,10,13,14
TS| 0O C+TS 2C 8
3C 26
2C 2C-TS 1,7
3C 19,25
2C+TS 3C 17
3C 2C-TS | 10,16
Aa | O C+ Sa 2C 8
3C 26
2C + 5S4 3C 17
C 0 2C C 3,9 1,3,7,8,9 1,3,7,89 1,3,7,9
3C C 12,18 | 10,12,16,17,18 | 10,12,16,17,18 | 11,10,13,14
2C| 0O 3C 2C 21,27 | 19,21,25,26,27 | 21,25,26,27 19,21,25,27
NOTE: the numbers in the algorithm columns represent individual test cases.

Table 3.5. Scheduling Algorithm Detection Summary

The table shows that there are several groupings of test case results which can be used to
distinguish between the algorithms. The test cases listed at the intersection of each row and column,

in the bottom right of the table, represent those test cases which will produce the set of expected

3-9

results shown to the left when executed by the algorithm identified for that column. There are
two possibilities of expected results for test cases 1, 10, and 19 under the RR, FCFS, and Priority
columns because of equal arrival times for the tasks. Depending on whether task A or B is selected
for execution first, the expected results would fall into either the top portion of the table (when
task A executes first) or the bottom (when task B executes first). This is also the reason that test
case 1 occurs twice under the SJF column. In spite of this duplication, there is enough distinction
between the expected results to distinguish between which algorithm is used. After running all
test cases under an unknown scheduling algorithm, if the algorithm is one of the four shown in the
table, the actual results should match closely to the results in one of the columns. Test cases 1, 4.
6,7,8,10, 13, 15, 16, 19, 22, and 24 can distinguish RR from the other algorithms. Test cases 6, 8,
15, 17, and 24 can distinguish Priority from the other algorithms. However, a problem arises when
trying to distinguish between FCFS and SJF. Depending on whether task A or B is executed first
in test cases 10 and 19, FCFS and SJF may produce identical results. If an algorithm executes
task A first for test case 10 and task B first for test case 19, then the results would distinguish
FCFS from SJF. Otherwise, there is no distinction. Therefore, an additional test case is needed to

explicitly distinguish between the FCFS and SJF algorithms.

As noted earlier, I realized that these test cases could only detect the static SJF algorithm,
not the dynamic one. Since Ada tasks can be dynamically created, it is not very feasible that
an Ada run-time system would have the prior knowledge of task service times before execution.
Though it is still unlikely that an Ada run-time system would keep track of individual task CPU
burst times to use for task scheduling, I decided to add a test case to detect dynamic SJF so both

forms of SJF were included.

This final test case requires six tasks: two with very short CPU burst times, two with medium
burst times, and two with long CPU burst times. All tasks will be assigned equal priorities and

assumed to have equal arrival times. The task parameter relationships for this test case are provided

3-10

in Table 3.6.

The Gantt chart, as well as subsequent start and finish times, for this test case depend on the
order in which the tasks are started. The initial order is not important for algorithm detection, but
the relationships between start and finish times will distinguish between RR, FCFS, and dynamic
SJF. Priority will not be considered in this test case because it is already addressed in the earlier
test cases and no additional information would be gained by having unequal task priorities in this
test case. Given that the CPU burst request occurs at least three times during task execution, and

the initial order of execution is F, A, E, D, C, and B; Tables 3.7 through 3.9 show the Gantt

[Test Case 28 |

Task | CPU Burst | Arrival | Priorily
D Required Time

A Ba=C 0 P

B | Bs=C/2 0 P

C |Ac=C/i00] 0 P

D Bp=C 0 P

E | Be=C/2 0 P

F | Br=CJ/100| O P
where C is some large CPU burst requirement,
and ﬁ." is CPU burst requirement for Task |

Table 3.6. Task Parameter Relationships for Test Case 28

charts for FCFS, RR, and SJF respectively.

FCFS Gantt Chart for Lest Case 28

Time 0-1 2-201 202-301 302-501 502-503 504-603

Task F A E_ D C “B_

Time | 604-605 606-805 806-905 906-1105 | 1106-1107 | 1108-1207

Task F A E "D C B

Time | 1208-1209 [1210-1409 | 1410-1509 |. 1510-1709 | 1710-1809 | 1810-1811

Task F A E D C B
where Time is expressed in 1'S units, and 2T'S = C/IOOOPTS = C/200.

The FCFS algorithm will service the jobs in the order they are queued in the ready queue

(e.g. F, A, E, D, C, B) and the jobs will complete in that same order. The start and finish times

Table 3.7. Predicted FCFS Gantt Chart for Test Case 28

3-11

RR Gantt Chart for Test Case 28

Time 0 1 2 3 4 5 6 7 8 9 10 11
Task F A E{DIC[Bj{F]A E D C B
Time | 12 13 |14 1516 17|18 {19 | 20 21 22 23
Task F A E{D|{C|[B|F A E D C B
Time 24 25 26 1271281293031 32 33 34 35
Task F A E|{DIC|BI|F}{A E D C B
Time 36 37 38 | 39 1212 I 1213 | 1214 | 1215
Task A E D|C A | E D C
Time | 1216 | 1217 1810 | 1811
Task F A C F A
where Time is expressed in 1'S units, and 275 = C/1000rTS = C/200.
Table 3.8. Predicted RR Gantt Chart for Test Case 28
[Dynamic SJF Gantt Chart for Test Case 28]
Time 0-1 2-201 202-301 | 302-501 | 502-503 | 504-603
Task | F A E | D C_ B
Time | 604-605 | 606-607 | 608-707 | 708-807 | 808-1007 | 1008-1207
Task F C E B A D
Time | 1208-1209 | 1210-1211 | 1212-1311 | 1312-1411 | 1412-1611 | 1612-1811 J
Task F C E B A D
where Time is expressed in 1S units, and 2TS =C / 1000rTS = C / 200.

Table 3.9. Predicted SJF Gantt Chart for Test Case 28

3-12

for FCFS will be staggered by the amount of CPU burst time required by each preceding task. The
RR algorithm will service the jobs in the order they are queued, but it will only permit a small slice
of the CPU each time through the queue. Thus, the start times of the RR algorithm will have each
task staggered by a time slice. The finish times of the tasks under RR will be grouped by burst
requirements, with those tasks requiring the smaller bursts finishing first. The tasks in each group
will be staggered by the number of time slices needed to finish their last burst requirement (i.e.(CPU
burst time / time slice) * number of remaining tasks). Finally, the Dynamic SJF algorithm will
have start times whick are equivalent to FCFS (it has to run the tasks through their first CPU
burst). The finish times under Dynamic SJIF will be grouped similar to RR, but with the tasks
within each group staggered by the preceding task’s burst requirement. These expected start and

finish times are summarized in Tables 3.10 through 3.12.

After closely looking at these predicted results, the single test case described above should
produce a distinct set of results when run by different scheduling algorithms. Thus, this test case
may be the only one required to distinguish between the four scheduling algorithms of interest. |
was still curious as to whether the initial twenty-seven test cases could be used to detect the RR,
FCFS, and Priority algorithms. | was also curious as to how well I could model the test cases with
Ada programs. In particular, I wanted to see whether I could model the equal arrival times for two
Ada tasks. Finally, [wanted to see how closely the actual execution results would compare with
those predicted using the Gantt charts and flow-time analysis. So, I decided to use all twenty-eight
test cases, model them using Ada programs, compile the programs, and compare the actual test

case results with those which are predicted here.

3-13

Predicted Test Case 28 Start and Finish Times
FCFS Algorithm

Parameter Predicted Result
SFr 0
Sa C/100
Se C +C/100
Sp C+C/100+C/2
Sc 2C + C/100+C/2
Sp 2C 4+ C/50+ C/2
Fr (3(L - 1)/50)C + C/100
Fa (3(L - 1)/50)C + C + C/100
Fg (3(L-1)/50)C+C+C/2+ C/100
Fp (3(L - 1)/50)C +2C +C/2 + C/100
Fe (3(L-1)/50)C+2C+C/2+C/50
Fg (3(L - 1)/50)C + 3C + C/50

where L is the number of bursts required

Table 3.10. Test Case 28 FCFS Prediction Summary

Predicted Test Case 28 Start and Finish Times
RR Algorithm
Parameter — Predicted Resxlt
Sr 0
Sa TS
Sg 2TS
Sp 3TS
Sc 4TS
Sp 5TS
Fr 30TS + I1TS
Fy 36TS + (Ba/TS) #n)
Fg 36TS + (Be/TS) *n)
Fp 36TS + (8p/TS) * n)
Fc 30T'S + 515
Fp 36TS + (B /TS) *n)
where jTS is assumed equal to C/200
and 1 is the number of remaining tasks

Table 3.11. Test Case 28 RR Prediction Summary

3-14

Predicted Test Case 28 Start and Finish Times
Dynamic SJF Algorithm
Parameter Predicted Result
Sp 0
Sa C/100
Sg C+C/100
Sp C+C/100+ C/2
Sc 2C + C/100+C/2
S 2C+C/50+ C/2
Fp (3(L - 1)/50)C + C/100
Fu (3(L —1)/50)C + C/50
Fg (3(L - 1)/50)C + C/50+ C/2
Fp (3(L -1)/50)C + C/50+ C
Fe (3(L - 1)/50)C + C/50 + 2C
Fp (3(L - 1)/50)C + C/50 + 3C
where L is the number of bursts required

Table 3.12. Test Case 28 Dynamic SJF Prediction Summary

3-15

[V. Design and Development of Ada Task Schedule Detection Test Cases

The twenty-eight test cases identified for detecting task scheduling algorithms were described
in Chapter III. A different combination of scheduling parameters was identified for each test case.
Some of the parameters need to be controlled prior to execution, while other parameters need to be
measured after execution. This chapter identifies the specific constructs used in the Ada programs
to control and measure the reqred scheduling parameters. The Ada programs that implement

the test cases are provided in Volume 2 of this thesis.

4.1 Ada Constructs Used for Implementation

The parameters of a given task, i, requiring control prior to execution are the arrival time
(A;), the service time (C;), and the priority (F;). The parameters which will need to be measured
during task execution are the start (S;) and finish times (F;). The completion time (T;) parameter

will also be used, but can be derived from the start and finish times (i.e. T; = F; - S;).

My approach for test cases 1 - 27 was to have two tasks available for uninterrupted execution.
Each task is distinguished by its name (i.e. task A or B) and its associated controlled parameters
(i.e. Aq, A, Ca, Cpg, P4, and Pg). The measured parameters (i.e. Sa, S, Fa, and Fpg) are
recorded during execution, and derived parameters (i.e. T4 and Tg) are calculated after execution.
Finally, the measured and derived parameters are analyzed manually to see if they reveal the

scheduling algorithm used during execution.

For test case 28, I used six tasks instead of two, I did not control task arrival times, and I
did not use uninterrupted execution. In test case 28, I wanted to see how the run-time system
scheduled tasks which contained fixed CPU bursts (i.e. 84, 88, B¢, Bp, Be, and GFr) between
run-time system interrupts (delays). In this case, the relationship between task arrivals was not as

important as the relationships between task starting times and finish times.

The following discussion addresses the control of each task’s arrival time, service time, CPU
burst requirement, and priority. The section closes with a discussion on how an Ada task’s start
and finish times are measured. In each of the following sections, the Ada constructs used for test

cases 1 - 27 will be discussed first and then, if different, test case 28 will be discussed.

4.1.1 Task Arrival Times. The task arrival time proved to be the most difficult parameter
to control. I tried several approaches to controlling task arrival times, but none of the approaches
could generate equal arrival times precisely. The three approaches considered for controlling arrival
times were (1) using a task type specification, (2) using individual single task specifications &
bodies, and (3) using a ‘busy wait’ spin test. These approaches are discussed in the following

paragraphs.

Initially, I thought that it was possible to control task arrival times. The LRM states that:

A task body defines the execution of any task that is designated by a task object of
the corresponding task type. The initial part of this execution is called the activation
of the task object, and also that of the designated task; it consists of the elaboration
of the declarative part, if any, of the task body. The execution of different tasks, in
particular their activation, proceeds in parallel. (12:Sec 9,5)
With regard to task activation, the LRM states that “if an object declaration that declares a
task object occurs immediately within a declarative part, then the activation of the task object
starts after the elaboration of the declarative part (that is, after passing the reserved word begin
following the declarative part” (12:Sec 9,5). This implies that equal arrival times should be possible
by defining a task type, and declaring several task objects of that type within the declarative portion
of the parent program or procedure. Then, when the procedure’s begin statement is reached, the
task objects should be activated in parallel {(i.e. they would have equal arrival times). Additionally,
since activation starts after any initialization for the object created by an allocator, unequal arrival

times (i.e. A4 < Ap) could be achieved by using two separate allocations with a delay between

them. But, there are two problems associated with this approach.

4-2

The first problem is that two things cannot be done at the same time on a single-processor
system. Therefore, tasks cannot be activated simultaneously as the LRM indicates, the run-time
system can only activate them sequentially. The second problem is associated with the measurement
of the S; and F; parameters. When several task objects are derived from the same task type
specification, unique S; and F; parameters for each task object cannot be maintained. If start and
finish time variables are declared in the task type specification, each task could record its own S,
and Fy, but these parameters would be lost at the termination of the tasks. Any I/O to permanently
record S; and F; during task execution would interrupt the task, interfering with the detection of
the scheduling algorithm. If start and finish time variables are declared in the parent program of
the tasks, only the S; and F; parameters of one task would be recorded (one tasks would overwrite
the parameters of the other task). This makes it impossible to record unique S; and F; parameters

for more than one task.

Another possible approach to controlling task arrival times is to define specifications and bod-
les for each task. With this approach, there is no problem with S; and F; parameter measurements.
A pair of start and finish time variables for each task can be declared in the parent procedure. Since
declarations made in the parent procedure are visible to the tasks also declared in that procedure,
each task can record its own S; and F; parameters. By creating each task object separately using
allocators, this approach can also handle the unequal arrival time scenario. However, this approach
has the same problem with equal arrival times as the other approach. Even though task types are

not used, the run-time system still cannot activate the tasks simultaneously.

The last approach is to use a ‘busy wait’, and allow the parent procedure to ‘start’ task
execution by setting a flag. With this approach, tasks are defined and declared using individual
task specifications and bodies. Then, immediately upon activation, each task goes into a ‘busy
walit’ loop. During the ‘busy wait’ loop, each task checks a flag and executes a delay statement if

the flag hasn’t been set. A state diagram, which shows the possible states of an Ada task, helps

4-3

to see what really happens when the delay is used. In his book, Software Engineering with Ada,

Booch describes the six possible states of an Ada task and provides a state diagrarh. This diagram

is shown in Figure 4.1.1 (3:282).

In reference to the state diagram, initial task activation moves the task out of the elaborated
state and into the running state. The delay causes a task to be blocked, and the next task in the
ready queue begins execution. This implies that the ‘busy wait’ loop permits two tasks to swap first
place position in the ready queue whenever the delay duration expires. I used duration’small for
the delay. This value is machine dependent, but it is so small that it should not produce measurably
different arrival times. When the parent program sets the flag, the task at the front of the ready
queue will drop out of the ‘busy wait' and begin execution. The other task will move to the front
of the ready queue as soon as its delay is completed. Since either task could be at the front of the
ready queue when the parent program sets the flag, each task has a equal opportunity of starting.
This was as close to equal arrival times that I could come up with. This may produce unexpected
results for those test cases which have unequal priorities or service times, and are expecting equal
arrival times. For example, the expected results for a Priority algorithm would be that the task
with the higher priority is start first; but this may not occur if the task with the higher priority is
not at the front of the ready queue. But, then again, the ‘right’ task may be at the front of the
ready queue and the actua! results would correctly match those which were predicted. Analysis of
actual execution results will be needed to evaluate whether this approach adequately models equal

arrival times.

As noted earlier, I did not have to control arrival times for test case 28. I still used the ‘busy
wait’ loop to insure that all tasks had an equal opportunity of being selected for execution. But
in this case, instead of two tasks exchanging first place position in the ready queue, there were six
tasks. Of the six tasks, two required short CPU bursts, two required medium CPU bursts, and two

required long CPU bursts. Thus, after the flag was set, there was always at least one task of each

Elaborated

Blocked

Completed

b

Figure 4.1. Ada Task States (3:282)

burst type in the ready queue awaiting execution.

§.1.2 Task Service Time. The task service time corresponds to the the total time which
the task spends in the running state. The computation representing this service time was the
calculation of the area of a circle, where the radius of the circle was the iteration index of the loop.
The length of the service time was controlled by the number of iterations. Prior to running the
test cases, C4 and Cp could be measured by running a program containing a single task. With
only a single task, the run-time system executes the task until it has finished all loop iterations.
By measuring S; immediately before entering the loop and measuring F; immediately after exiting
the loop, C; is computed by subtracting F; from S;. The relationship C4 = Cpg is achieved by
having the same size loop in each task. The relationship C4 = 2Cp is achieved by having task A’s
loop iterate twice as many times as B’s loop. And 2C4 = Cp is achieved by having task A’s loop

iterate half as many times as task B’s loop.

I encountered two small problems with this approach. Initially, I used integer values (ranging
from 1 to 700,000) for my loop iterations, which worked fine on the mini-computer based Ada
compilers. But, on the PC-based compilers, the programs would not execute because of the machine
dependent constraints imposed on integer object ranges. I declared a ‘SERVICE_TIME’ type with
the appropriate range to alleviate this first problem. The next problem was more of an inconvenience
than a problem. I found that executing 700,000 iterations produced an acceptable service time on
the mini computer systems, but produced too long of a service time on a PC. On the other hand,
executing only 100,000 iterations on the mini computer systems did not produce a measurable
service time, but produced a acceptable service time on a PC. Therefore, I had to use two separate
values as my upper limit for the range of the ‘SERVICE.TIME’ type depending on the computer

I ran the test cases on.

4.1.3 CPU Burst Requirements. In order to model CPU burst requirements, I needed to

perform a continuous interval of CPU processing, then generate a task interrupt request where the

4-6

task would be blocked and another task could be permitted to execute. As noted above, a continuous
interval of processing can be modeled using a loop containing some ‘busy’ computation. For the
interrupt, [used a delay statement. According to the LRM, “the execution of a delay statement
evaluates the simple expression, and suspends further execution of the task that executes the delay
statemnent, for at least the duration specified by the resulting value” (12:Sec 9,10). Placing a delay
statement immediately after the busy loop, and using Duration’small for the simple expression,
adequately modeled the CPU burst requirements. Placing this ‘busy’ loop within another loop
of just a few iterations produces a task with several CPU bursts. In order to detect whether a

Dynamic SJF algorithm is being used for task scheduling, at least two CPU bursts are needed.

The duration of the burst corresponds to the time required for the CPU to process the ‘busy’
loop. For test case 28, [defined a ‘BURST SIZE’ type equivalent to the ‘SERVICE_TIME’ type for
the loop iteration range. Then, I declared the loop iteration limit for the large, medium, and small
bursts. A ‘large burst’ loop iterates to the largest number in the range and produces a CPU burst
requirement which is equivalent to a single task’s service time, measured above as C;. A ‘medium
burst’ loop iterates one half the number of times of the ‘large burst’ loop producing a CPU burst
requirement only one half the size of the large CPU burst. Finally, a ‘small burst’ loop iterates
only 1/100th the number of times of the large burst loop producing a CPU burst requirement of

only 1/100th the size of the large CPU burst.

4.1.4 Task Priorities. The easiest scheduling parameter to implement with Ada was the
priority parameter. The Ada LRM states that “ a priority is associated with a task if a pragma
PRIORITY (static ezpression) statement appears in the corresponding task specification” (12:Sec
9,16). The only precaution I had to take was to insure that the parent procedure had a higher
priority than any of its tasks so it could set the flag needed to control arrival times. Thus, I
assigned the parent procedure the highest priority. When the relationship P4, = Pg was required,

I assigned both tasks a priority of one less than the parent task. When the relavionship P4 < Pp

4-7

was required, I assigned task A a priority which was two less than the parent task and B one less
than the parent task. The relationship P4 > Ppg is clearly the opposite of the assignments noted

above.

I did not use any task priorities for test case 28, but I did assign the parent task the highest
possible priority. As discussed earlier, test cases 6, 8, 15, 17, 24, and 26 were developed to distinguish
a Priority algorithm. Therefore, it was not necessary to include additional permutations of test

case 28 with different combinations of task priorities.

4.1.5 Measurement of Start and Finish Times. In the prcdefined CALENDAR package,
DAY _DURATION is defined as a subtype of the predefined fixed point type DURATION. Ad-
ditionally, CLOCK is defined as a function which returns the current value of TIME whenever
it is called, and SECONDS is defined as a function that accepts the current TIME and returns
DAY DURATION. Thus, the start time and finish time of a task (measured in seconds) can be
obtained from the run-time system using a combination of these function calls. Assignment of the
time to either S; or F; is made by invoking the function CALENDAR.SECONDS which, in turn,
invokes the function CALENDAR.CLOCK. These CALENDAR functions are used in all 28 test

cases to record the start and finish times of the tasks.

4.2 Overall Parent Program Structure

For each test case I used a ‘main’ procedure distinguished by a name which identified which
test case was being modeled. Within the ‘main’ procedure of each test case there is a DETECT
procedure which contains the required tasks. The ‘main’ procedure program body simply invokes
the DETECT procedure, then outputs the start and finish time parameters (i.e. Su, Sg, Fa, and
Fg) after the DETECT procedure is completed. The DETECT procedure is used to prevent the
main procedure from interfering with task execution. After invoking the ‘DETECT’ procedure, the

‘main’ procedure is blocked until the ‘DETECT’ procedure has finished. Thus, the ‘main’ procedure

(1) starts the DETECT procedure, (2) is blocked during task execution and does not interfere with
the run-time systems ability to schedule tasks, and (3) records the measured parameters prior to

program completion.

The ‘DETECT’ procedure contains the declarations of parameter object types, flags, and
task specifications and bodies. Most of the control, and all recording of task parameters, occurs
within the task bodies. The only function the DETECT procedure performs is setting the flag(s)
to control arrival times of the tasks. After setting the flag(s), the DETECT procedure is blocked

until its tasks complete.

Within the task bodies, the four functions described above are sequentially performed. First,
the task waits at the ‘busy wait’ loop for the flag to be set. After the flag is set, the task records
its start time using the CALENDAR functions, SECONDS and CLOCK. Next, either the ‘service
time' loop or the ‘CPU burst’ loop is executed depending on whether the task is modeling one of

test cases 1 - 27, or test case 28. Finally, the finish time is recorded.

4-9

V. FEzecution Results for Ada Task Scheduling Detection

This chapter presents the results of compiling the Ada test case programs under several Ada
compilers, then executing the programs. Each compiler has its own run-time system associated
with it. The goal is to detect the task scheduling algorithm which is used by each Ada run-time

system and validate the test cases. The compilers used were:

o the Alsys PC AT Ada Compiler, Version 3.2;
e the VAX Ada Compiler, Version 1.0;

¢ the Meridian AdaVantage Compiler, Version 2.1;

the Elxsi/Verdix Ada Compiler, Version 5.4; and

the Encore/Verdix Concutrent Ada Compiler, Version 5.5

Based on their reference manuals, [knew the scheduling algorithms used in the first three compilers
and could use these to validate my test cases. I ran the test case programs on the other two compilers
to further experiment with Ada task scheduling algorithm detection. Although the analysis of the
execution results for a single test case does not provide conclusive evidence of which scheduling
algorithm was used by the Ada run-time system, the corg -.ate analysis of all test case results does
reveal the characteristics of the algorithm used by the Ada run-time system. The analyses of the

results for each Ada compiler are provided in the following sections.

51 Alsys PC AT Ada Compiler

[used the Alsys PC AT (v3.2) Compiler because it provided the capability of selecting a
task scheduling scheme without having to recompile. According to the Alsys PC AT Ada Compiler
(v3.2) User’s Guide, setting the ‘SLICE’ parameter to a value greater than zero permits control

of the frequency in which the task scheduler is invoked. Thus, setting the Bind/Run-time option

5-1

‘SLICE’ to (50ms) causes the run-time system to use a RR algorithm with a time slice of 50ms.
When the Bind/Run-time ‘SLICE’ option is set to zero or a negative number, thé task scheduler
is invoked only at explicit synchronization points (2:48). Thus, a FCFS algorithm is used by the
run-time system when the ‘SLICE’ option is set to zero. The analysis of the results obtained should
determine whether the test cases reflect the chosen scheduling method. First, the results of running
the test cases with a zero ‘SLICE’ setting (i.e. FCFS algorithm) are discussed, then the results of

running with a 50ms ‘SLICE’ setting (i.e. RR algorithm) are discussed.

5.1.1 Results with SLICE Option Set to Zero. The results of compiling test cases 1 through
27 using the Alsys PC AT Ada Compiler (v3.2) and executing these compiled programs on a Zenith
Z-248 computer system using a Oms '‘SLICE’ setting are provided in Tables B.1 through B.3 of

Appendix B. The following analysis is provided for these resuits.
Test Cases | & 10 results do not reveal a clear distinction between FCFS, SJF, or Priority.

Test Case 2, 11, & 20 results do not match any predicted results for the test cases. Task B
starts first, then task B is preempted when task A finishes its busy wait delay. Then, task A runs
to completion before task B is allowed to finish. This could occur with these test cases because of
the inability to accurately model equal arrival times in Ada. Since task B is preempted to allow

execution of task A, it appears as though a Priority algorithm is being used.

Test Case 3, 12, & 21 results produced the same problem discussed above for test cases 2, 11,
& 20; but with opposite task execution order. It appears as though a Priority algorithm is being

used.

Test Case 4, 13, 22 results do not match any predicted results for the test cases. Task A
arrives first and starts, but is preempted by Task B and blocked until task B is finished. This could
occur if completion of a ‘DELAY’ causes the currently running task to be interrupted and swapped

out. Actual algorithm could be Preemptive FCFS.

5-2

Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.

Test Case 6, 8, 15, 17, 24, & 26 results do not distinguish between RR or Priority algorithms.

This could be caused by the arrival time modeling used.

Test Case 7, 16, & 25 results produced the same problem discussed above for test cases 4,

13. 22; but with opposite task execution order. Actual algorithm could be Preemptive FCFS.
Test Case 19 results do not distinguish betweer FCFS or Priority algorithms.

If the completion of a delay is one of the evnlicit synchronization points where the task
scheduler is invoked, then the results seem to indicate that a Preemptive FCFS algorithm is used.
This treatment of the delay statement inhibits the capability to model the desired task arrival times
using the delay and emphasizes the need for an additional test case. Since there is no conclusive
evidence that any of the designated scheduling algorithms is being used, these test cases cannot be

used reliably on this compiler.

Since the analysis of the results of test cases 1 - 27 did not clearly reveal which algorithm was
used, [ran test case 28 to see if it could detect the FCFS algorithm. The results of compiling test
case 28 using the Alsys PC AT Ada (v3.2) Compiler and executing it on the Zenith Z-248 computer
system after setting the ‘SLICE’ option to 0 are provided in Tables B.4 through B.6 of Appendix

B. I complied the test case once, but executed it three times to produce three sets of results.

The start times for these results are clearly separated by the corresponding time it would
take for the preceding task to complete a CPU burst. This would imply that either SIF or FCFS is
used. But, since the completion order is the same as the starting order and the separation of finish
times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,
the execution sequence and the relationships of the start and finish times confirm that the Alsys
PC AT Ada (v3.2) Compiler uses a FCFS algorithm to schedule tasks when the ‘SLICE’ parameter

is set to zero. This also validates that this test case can be used for FCFS algorithm detection.

5.1.2 Results with SLICE Option Set to 50 ms. The results of compiling test cases 1 through
27 using the Alsys PC AT Ada Compiler (v3.2) and executing these compiled programs on a Zenith
Z-248 computer system using a 50ms ‘SLICE’ setting are provided in Tables B.7 through B.9
of Appendix B. Throughout these results, the actual time slice appears to be greater than the
.05 seconds which was selected under the run-time option. This most likely is attributable to the
required context switching. Thus, I assumed that a .11sec difference between task start times was
due to a time slice expiration, and a .05sec difference was due to the busy wait delay used to model
task arrival times. Based on these assumptions, the following analysis is provided for the results

which are shown in Tables B.7 through B.9 of Appendix B.
Test Case 1, 7, 10, 16, 19, & 25 results reveal the RR algorithm was used.

Test Cace 2, 11, & 20 results do not distinguish between RR or Priority algorithms. This is
due to Task B unexpectedly starting before task A. This could be caused by task B being in the
Ready queue while task A is blocked due to the busy wait delay, which is related to modeling task

arrival times.

Test Case 3, 12, & 21 results indicate either RR or Priority as noted above, but with the

tasks swapped around.
Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.

Test Case 6, 15, & 24 results reveal the RR algorithm. The distinction between Priority is
made because the start time of task B is greater than that which would be encountered with a

Priority algorithm.

Test Case 8, 17, & 26 resuits reveal the RR algorithm. The distinction between Priority is
made because the start time of task A is greater than that which would be encountered with a

Priority algorithm.

Test Case §, 13, & 22 results reveal the RR algorithm was used. But instead of task B

starting after a time slice, it seems as though task B starts immediately after the busy wait. This

5-4

results in task A not finishing before task B. It could be that task A is in the Ready queue and
begins running; then when task B is finished with the busy wait, it preempts task A and runs a full
time slice before task A has a chance to complete a full time slice. Thus, after task B is finished,
task A still has some processing to complete. It definitely can’t be FCFS, SJF or Priority because

the start time for task B is not equal to 2C or 0.

Although the results of some test cases did not reveal RR, this was expected and identified in
chapter III. The majority of the test cases reveal that the RR algorithm was used. This confirms
that the Alsys PC AT Ada (v3.2) Compiler does use a RR algorithm when the *Time Slice’ option
is set to a number greater than zero. And this validates that these test cases can detect when an

Ada compiler uses a RR algorithm for task scheduling.

Although the results of the first twenty-seven test cases revealed the RR algorithm, [ran test
case 28 to see if it could also reveal the correct algorithm. The results of compiling test case 28
using the Alsys PC AT Ada (v3.2) Compiler and executing it on the Zenith Z-248 computer system
after setting the ‘SLICE’ option to 50ms are provided in Tables B.10 through B.12 of Appendix
B. These results represent the same program compiled once, then executed three times. Analysis

of these results revealed the following information.

The start times for these results are separated by corresponding time required for a time
slice and the associated context switching. If either FCFS or SJF were being used, the difference
between task start times would be much larger. Additionally, the reordering of the finish time
sequence from that of the start time sequence clearly rules out a FCFS algorithm. The finish times
of tasks A & D, taska B & E, and tasks C & F are separately grouped in the order of shortest
to largest CPU bursts. This reordering indicates that either SJF or RR was used. But, the close
proximity of the task finish times within each group clearly distinguish this as RR, and not SJF.
The close proximity of the task finish times within each group represent the completion of one final

time slice. If a SJF algorithm were used, the difference between task finish times within each group

55

would correspond to the time required for a final small, medium, or large CPU burst. Thus, the
relationships between the start times and finish times, as well as the execution order, clearly reveal
that a RR algorithm was used. This also validates that this test case can be used for RR algorithm

detection

5.2 VAX Ada Compiler

[used the VAX Ada (v1.0) Compiler because it provided a ‘pragma TIME_SLICE (stafic
ezpresstion)’ statement which is used to alter thé sequence of task scheduling. Although this pragma
statement is not available on all Ada compilers, it was easily inserted to provide results on an
additional compiler with a known scheduling algorithm. According to the VAX Ada Language

Reference Manual,

The effect of enabling round-robin scheduling with pragma TIME_SLICE is defined
by the following rules:

¢ The value applies to the scheduling of every task in the program.

o As long as an executing task is not preempted from the processor by a task of
higher priority and does not become suspended, that task will execute for at most
the number of seconds (approximate elapsed time) specified by the pragma. Then,
if other tasks of the same priority are eligible for execution, the executing task will
stop executing, and the task that has been waiting the longest will be selected for
execution (11:Sec 9,22).
When the pragma TIME_SLICE is not used (or when the static expression is set to zero), the
VAX Ada Language Reference Manual indicates that “a task is executed either until it becomes
suspended or until a task of higher priority becomes eligible for execution” and “tasks of the same
priority are executed in first-in first-out order (by default)” (11:Sec 9,21). Thus, when the test
cases are run with the ‘pragma TIME_SLICE (0.05)’ statement, the run-time system should use a
RR algorithm with a .05sec time slice to schedule tasks for execution. And ven the test cases

are run without the ‘pragma TIME_SLICE ()’ statement, the run-time system should use a FCFS

algorithm when task priorities are equal and a Priority algorithm when the priorities are different.

5-6

5.2.1 Results without the ‘Pragma TIME_SLICE ()’ Statement. The results of compiling
test cases 1 through 27 using the VAX Ada Compiler (v1.0) and executing these compiled pro-
grams on a VAX 8600 computer system without using the ‘pragma TIME_SLICE ()’ statement are
provided in Tables B.13 through B.15 of Appendix B. The following analysis is provided for these

results.

Test Cases 1, 4, 7, 13, 16, 19, 22, & 25 results do not reveal a clear distinction between

FCFS, SJF, or Priority.

Test Case 2, 11, & 20 results do not match any predicted results for the test cases. Task B
starts first, then task B is preempted when task A finishes its busy wait delay. Then, task A runs
to completion before task B is allowed to finish. This could occur with these test cases because of
the inability to accurately model equal arrival times in Ada. Since task B is preempted to allow

execution of task A, it appears as though a Priority algorithm is being used.

Test Case 3, 12, & 21 results produced the same problem discussed above for test cases 2, 11,
& 20; but with opposite task execution order. It appears as though a Priority algorithm is being

used.
Test Case 5, 9, 14, 18, 23, & 27 resuits do not differentiate between any of the algorithms.

Test Case 6, 8, 15, 17, 24, & 26 results do not distinguish between RR or Priority algorithms.

This could be caused by the arrival time modeling used.
Test Case 10 results do not distinguish between FCFS or Priority algorithms.

Several of the test cases reveal that a Priority algorithm scheme is used when task priorities
are different. But, the FCFS algorithm is not clearly revealed when task priorities are equal. Once
again, the treatment of the delay statement inhibits the capability to accurately model the task

arrival times using a delay, and emphasizes the need for an additional test case.

Since the analysis of the results for test cases 1 - 27 did not clearly reveal which algorithm

5-7

was used, I ran test case 28 to see if it could detect the FCFS algorithm. The results of compiling
test case 28 using the VAX Ada (v1.0) Compiler and executing it on a VAX 3600 computer system
without using the ‘pragma TIME_SLICE ()’ statement are provided in Tables B.16 through B.18
of Appendix B. | complied the test case once, but executed it three times to produce three sets of

resulits.

The start times for these results are cleatly separated by the corresponding time it would
take for the preceding task to complete a CPU burst. This would imply that either SIF or FCFS is
used. But, since the completion order is the same as the starting order and the separation of finish
times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,
the execution sequence and the relationships of the start and finish times confirm that the VAX
Ada (v1.0) Compiler uses a FCFS algorithm to schedule tasks when the ‘pragma TIME_SLICE ()’

is not used. This also validates that this test case can be used for FCFS algorithm detection.

5.2.2 Results with the ‘Pragma TIME_SLICE (0.05)’ Statemen!. The results of compiling
test cases 1 through 27 using the VAX Ada Compiler (v1.0) and executing these compiled programs
on a VAX 8600 computer system while using the ‘pragma TIME_SLICE (0.05)’ statement are
provided in Tables B.19 through B.21 of Appendix B. The following analysis is provided for these

results.
Test Case 1, 4, 7, 10, 18, 16, 19, 22, & 25 results reveal the RR algorithm was used.

Test Case 2, 11, & 20 results do not match any predicted results for the test cases. Task B
starts first, then task B is preempted when task A finishes its busy wait delay. Then, task A runs
to completion before task B is allowed to finish. This could occur with these test cases because of
the inability to accurately model equal arrival times ip Ada. Since task B is preempted to allow

execution of task A, it appears as though a Priority algorithm is being used.

Test Case 3, 12, & 21 results produced the same problem discussed above for test cases 2, 11,

& 20; but with opposite task execution order. It appears as though a Priority algorithm is being

5-8

used.
Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.
Test Case 6, 8, 15, 17, 24, & 26 results reveal the Priority algorithm was used.

These results reveal that a RR scheduling algorithm is used. The test case results that
indicate a Priority algorithm was used reveal the proper handling of tasks with unequal priorities.
These results are consistent with what the manual says about task scheduling when the ‘pragma

TIMESLICE (0.05)’ statement is used with the VAX Ada (v1.0) Compiler.

Although the first twenty-seven test cases revealed the RR algorithm, I ran test case 23 to
see if it could also reveal the correct algorithm. The results of compiling test case 28, with the
pragma TIME_SLICE (0.05) statement, using the VAX Ada (v1.0) Compiler and executing it on a
VAX 8600 computer system are provided in Tables B.22 through B.24 of Appendix B. I compiled

the program once, then executcd it three times to produce three sets of results.

These results show the same relationships as encountered with the results of the Alsys PC AT
Ada Compiler with the ‘SLICE’ option set to 50ms. In all three runs of test case 28 the execution
sequence and comparative timing of the starts and finishes reveal that the RR algorithm was used.
The only problem with these results was the lack of distinction between the start times for tasks
B & C, and tasks E & F. The length of execution time for the two ‘Small Burst’ tasks was not
lcng enough to be measured by the system. If given more time, I would rerun this test case with
a longer burst time for the small, medium, and large burst loops. Regardless of this problem, it
was still clear that the start times were separated by the corresponding time required for a time
slice and context switching. The remaining discussion for finish times is the same as that provided
for running test case 28 on the Alsys PC AT Ada Compiler with the ‘SLICE’ option set to 50ms.
Overall, the execution sequence and the relationships of the start and finish times reveal that a RR
algorithm is being used ! *he run-time system of the VAX Ada (v1.0) Compiler when the time

slice pragma is used. Once again, this validates correct algorithm detection using this test case.

5-9

5.3 Meridian AdaVantage Compiler

I used the Meridian AdaVantage (v2.1) Compiler because the user manual for this compiler
specified the method used for task scheduling. According to the Meridian AdaVantage (v2.1)
Compiler User’s Manual, this compiler’s “task scheduler is not preemptive (i.e. task scheduler
does not use time slicing)”, instead “a single-processor round-robin prioritized scheduling system
switches tasks at activations, entry calls, completions, and wait conditions” (27:61). Although the
manual indicates a RR algorithm, the switching does not take place at predetermined time slice
intervals. Therefore, I would be more prone to label this a FCFS algorithm where preemptions
can occur when tasks request services of the run-time system. The analysis of the results obtained
should determine whether this type of algorithm is actually detected. The results of compiling test
cases 1 through 27 using the Meridian AdaVantage (v2.1) Compiler and executing these compiled
programs on a Zenith Z-248 computer (IBM-PC/AT compatible) system are provided in Tables

B.25 through B.27 of Appendix B. The following analysis is provided for these results.

Test Cases 1, 4, 7, 10, 13, 16, 22, & 25 results do not reveal a clear distinction between

FCFS, SJF, or Priority algorithms.

Test Case 2, 3, 5, 9, 11, 12, 14, 18, 20, 21, 23, & 27 results do not differentiate between any

of the algorithms.

Test Cases 6, 8, 15, 17, 24, & 26 results do not reveal a clear distinction between FCFS or

SJF algorithms.
Test Case 19 results do not distinguish between FCFS or Priority algorithms.

There was no single test case result which revealed a unique algorithm. But, the intersection
of all the test case results revealed that the Meridian AdaVantage (v2.1) Compiler most likely uses
a FCFS algorithm for task scheduling. This is consistent with the discussion provided above based

on the description in the user’s manual.

Although the analysis of test cases 1-27 revealed a FCFS algorithm, I ran test case 28 to see
if it could also detect the correct algorithm. The result of compiling test case 28 using the Meridian
AdaVantage Compiler (v2.1) and executing it on the Zenith Z-248 computer system is provided
in Table B.28 of Appendix B. Due to time constraints, I only ran test case 28 one time on the

Meridian AdaVantage Compiler.

The start times for these results are clearly separated by the corresponding time it would
take for the preceding task to complete a CPU burst. This would imply that either SIF or FCFS is
used. But, since the completion order is the same as the starting order and the separation of finish
times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,
the execution sequence and the relationships of the start and finish times confirm that the Meridian
AdaVantage (v2.1) Compiler uses a FCFS algorithm to schedule tasks. This also validates that

this test case can be used for FCFS algorithm detection.

5.4 FElzsi/Verdiz Ada Compiler

I used the Elxsi/Verdix Ada Compiler because it was convenient and fast. The Elrsi/Verdiz
Ada (v5.4) Development Systems Manual points out that “by default, all Ada tasks run together as
a single process (this is standard practice in Ada compilers)” (26). Although their comment does
not specify a particular scheduling algorithm, it implies that a RR algorithm scheme is used to
permit the tasks to ‘run together’. The analysis of the results obtained should determine whether
this type of algorithm is actually detected. The resuits of compiling test cases 1 through 27 using
the Elxsi/Verdix Ada (v5.4) Compiler and executing these programs on the Elxsi computer system
are provided in Tables B.29 through B.31 of Appendix B. The following analysis is provided for

these results.

Test Case [, § & 6 results reveal a RR algorithm. For some reason task A starts first, but

doesn’t fnish first. This could be due to the inability to accurately model the task arrival times.

5-11

In any case, the algorithm cannot be FCFS, SJF or Priority because the start time for task B is

not equal to 0 or C.

Test Case 2, 11, & 20 results do not distinguish between RR or Priority algorithms. This is
due to task B unexpectedly starting before task A. This could be caused by task B being in the
Ready queue while task A is blocked due to the busy wait delay, which is related to modeling task

arrival times.

Test Case 3, 12, & 21 results indicate either RR or Priority as noted above, but with the

tasks swapped around.
Test Case 5, 9, 14, 18, 23, & 27 results do not differentiate between any of the algorithms.

Test Case 7, 16, 19, & 25 results reveal RR, but the TS seems longer than it should be
(could be due to multi-user aspect of computer system). It definitely can’t be FCFS, SJF or

Priority because the start time for task A is not equal to C.
Test Case 8, 10, 13, 15, 17, 22, 24, & 26 resuits reveal the RR algorithm was used.

Although there are some unexpected results due to the inability to accurately model task

arrival times, it seems conclusive that a RR algorithm is being used.

Here, I ran test case 28 to validate the conclusion reached with the first twenty-seven test cases.
The results of compiling test case 28 using tb . Elxsi/Verdix Ada (v5.4) Compiler and executing it
on the Elxsi computer system is provided in Tables B.32 through B.34 of Appendix B. I compiled
the program once, then executed it three times to produce three sets of results. Analysis of these

results revealed the following information.

These results showed the same relationships as were encountered with the VAX Ada (1.0)
compiler. Again, the same problem with start times was encountered. And, if given more time, [
would have rerun this test case with longer CPU burst times. Regardless of this problem, the start

times for tasks which followed a long or medium CPU burst were separated by the time required

5-12

for a time slice and context switching. If either FCFS or SJF were being used, the duration
between task start times would be much larger. Additionally, the sequence of finish times, and
the relationship between the finish times for tasks A & D, tasks B & E, and tasks C & F reveal
a RR algorithm is being used. Thus, the execution sequence and comparative timing of the starts
and finishes for this single test case support the conclusion reached with the first twenty-seven test

cases.

5.5 FEncore/Verdiz Concurrent Ada Compiler

[used the Encore/Verdix Concurrent Ada (v5.5) Compiler to determine whether Verdix used
the same scheduling algorithm in separate compilers designed for two different computer systems.
Though the Encore is a parallel computer system, the Encore operating system permits the user to
select the number of processors to be used. All test cases were run on the Encore computer system
under a single processor environment using the Encore/Verdix Concurrent Ada (v5.5) compiler. I
was not able to locate any documentation for the Encore/Verdix Concurrent Ada (v5.5) Compiler.
Thus, I had no prior knowledge of which scheduling algorithm is used with this run-time system.
The results of compiling test cases 1 through 27 using the Encore/Verdix Concurrent Ada (v5.5)
Compiler and executing these programs on the Encore computer system are provided in Tables

B.35 through B.37 of Appendix B. The following analysis is provided for these results.

Test Cases 1, 4, 7, 10, 13, 16, 22, & 25 results do not reveal a clear distinction between

FCFS, SJF, or Priority algorithms.

Test Case 2, 3, 5, 9, 11, 12, 14, 18, 20, 21, 23, & 27 results do not differentiate between any

of the algorithms.

Test Cases 6, 8, 15, 17, 24, & 26 results do not reveal a clear distinction between FCFS or

SJF algorithms.

Test Case 19 results do not distinguish between FCFS or Priority algorithms.

There was no case where the results of an individual test case singled out a unique algorithm.
But, the intersection of all the test case results indicate that a FCFS algorithm is used by the

Encore/Verdix Concurrent Ada (v5.5) compiler.

After running test cases 1 - 27, I ran test case 28 to validate the conclusion noted above. The
result of compiling test case 28 using the Encore/Verdix Ada (v5.5) Compiler and executing it on
the Encore computer system is provided in Tables B.38 through B.40 of Appendix B. I compiled
the program once, then executed it three times to produce three sets of results. Analysis of these

results revealed the following information.

The start times for these results are clearly separated by the corresponding time it would
take for the preceding task to complete a CPU burst. This would imply that either SIF or FCFS is
used. But, since the completion order is the same as the starting order and the separation of finish
times has the same relationship as the starting times, the FCFS algorithm is revealed. Therefore,
the execution sequence and the comparative timing of the starts and finishes indicate that the
Encore/Verdix Concurrent Ada (v5.4) Compiler uses a FCFS algorithm to schedule tasks. Thus,
the results of this single test case support the conclusion reached with the first twenty-seven test

cases.

5.6 Summary

The initial set of test cases (i.e. 1 thru 27) was used to successfully reveal the RR scheduling
characteristics of the Alsys compiler when the ‘SLICE’ option was used and of the VAX Ada
compiler when the ‘TIME_SLICE’ pragma was used. But, this initial set of test cases was only
partially successful when it came to revealing FCFS characteristics. The Meridian compiler’s FCFS
algorithm characteristics were detected. However, this set of test cases could not be used to
conclusively detect the FCFS characteristics of the Alsys compiler when the ‘SLICE’ option was

set to zero, nor when the VAX Ada compiler was used without the TIME SLICE pragma.

5-14

On the other hand, test case 28 was successfully used to reveal the RR algorithm character-
istics of the Alsys and VAX Ada compilers when the ‘SLICE’ option and TIME;_SLICE pragma
were used, respectively. Additionally, this final test case was successfully used to reveal the FCFS
algorithm characteristics of the Meridian compiler, the Alsys compiler when the ‘SLICE’ option

was set to zero, and the VAX Ada compiler when the TIME_SLICE pragma was not used.

A summary of these findings is provided in Table 5.1.

| Results Summary |

Compiler Algorithm Used | Algorithm Revealed | Algorithm Revealed
by Comptler by Test Cases 1-27 by Test Case 28

Alsys w/out TIME SLICE FCFS Inconclusive FCFS

Alsys with TIME SLICE RR RR RR

VAX w/out SLICE pragma FCFS Inconclusive (*) FCFS

VAX with SLICE pragma RR RR RR
Meridian FCFS FCFS (**) FCFS

* . Priority characteristics were revealed when Pa ¢ B.

** . after intersection of all test case results.

Table 5.1. Execution Results Summary

5-15

VI. Conclusion and Recommendations

The goal of this thesis effort was to develop a suite of Ada programs to reveal, for any Ada
compiler, the underlying task scheduling algorithm it uses. In pursuit of this goal, the following

steps were completed:

e a review of the current work with Ada task scheduling;

¢ an examination of different approaches to scheduling algorithm detection;

identification of the parameters needed to differentiate between five scheduling algorithms:
o design of a set of test cases to control and measure the scheduling parameters;

¢ development and execution of Ada programs to model the test cases; and

analysis of the execution results to validate successful algorithm detection.

The following sections address the conclusions from this effort and recommend future research

directions.

6.1 Conclusions

Based on my research of the current work with Ada task scheduling, I found that there
are many p: .ulems associated with Ada task scheduling due to the ambiguity associated with
the tasking rules identified in the LRM. Until these changes are made to the Ada language, the
detection of the scheduling algorithm used by Ada run-time systems is very important to MCCR

system designers.

My first approach for detecting an Ada compiler’s task scheduling algorithm used a suite of
twenty-seven different Ada programs. Each program modeled a test case in which the start and
finish times of the two tasks was dependent on the relationships between their arrival times, service

times, and priorities. Analysis of the results obtained with this approach disclosed that only the

6-1

RR algorithm could be distinguished. Other algorithms could not because unexpected results were
encountered whenever the start and finish times of a test case were sensitive to task arrival times

(precise control of task arrival times is not possible in Ada).

A second approach revealed that precise control of task arrival times was not as important for
algorithm detection as originally anticipated. This approach used a single Ada program containing
six tasks, and which required control of only CPU burst time. This controlled CPU burst time
approach was used to correctly detect the task scheduling characteristics of algorithms used by
several Ada run-time systems. The program accurately reflected that the Alsys PC AT Ada (v3.2)
compiler uses a RR task scheduling algorithm when the SLICE option is set greater than zero, and
a FCFS task scheduling algorithm when the SLICE run-time option is set to zero. Additionally.
it reflected that the VAX Ada (v1.0) run-time system uses a RR task scheduling algorithm when
the pragma TIME_SLICE (0.05) statement is included in the program, or a FCFS task scheduling
algorithm when the pragma TIME_SLICE (0.05) statement is not included. Finally, the program

reflected that the Meridian AdaVantage (v2.1) compiler uses a FCFS algorithm for task scheduling.

Since none of the Ada compilers used either SJF algorithm for task scheduling, the program
was not validated for these. However, based on the distinct finish times which are expected when

either of the SJF algorithms are used, the program should reflect SIF characteristics also.

Although I did not prove that absolute algorithm detection is possible, I've shown that it is
possible to use an Ada program to distinguish one task scheduling algorithm from a restricted set
of algorithms. Thus, it should be feasible to expand this program to a suite of Ada programs which

will reveal, for any Ada compiler, the underlying task scheduling algorithm it uses.

6.2 Recommendations

This thesis effort has laid the groundwork for future development of an automated tool to

assist DoD software designers in the development of MCCR systems using Ada. The following

recommendations could improve the detection capability of the Ada program developed thus far.

I recommend adding a progra.i. to detect the characteristics of a Priority algorithm. This
program would contain one additional task with a priority which is higher than the current six
tasks. Additional Ada programs could be added to handle the detection of other algorithms as

appropriate.

The upper bound of the ‘BURST_TYPE’ declaration in the DETECT procedure should be
changed from a hard coded value to a parameter. With this change, the program could interactively
prompt the user to enter the desired upper bound value. This value impacts the number of *CPU
burst’ iterations, and subsequently impacts the length of time required to complete a given CPU
burst. The size of the value should be based on whether the Ada compiler being investigated is
targeted for a PC or mini-computer. This would permit execution on any size system, without

having to change the hardcoded value of the upper bound and recompiling the program.

An additional future enhancement would be to automatically detect the processor speed
by measuring the start and finish time of a predetermined CPU burst. Then, completion time
could be automatically computed and used to determine the upper bound for the ‘BURST_TYPE’
declaration. During execution of the test suite, results could be recorded and then automatically
analyzed to possibly predict the scheduling algorithm used. In this way, all user interaction could

be removed.

The final recommendation would be to formally verify the test suite of Ada programs used
to detect the task scheduling algorithms. This thesis effort did not prove that a given algorithm
was used, the results produced here have only demonstrated the feasibility of this approach by
revealing the algorithm characteristics exhibited by Ada run-time systems. The development of
formal specifications, accompanied by a formal proof that the specifications do, in fact, distinguish
between individual scheduling algorithms would improve the confidence of using this approach for

scheduling algorithm detection.

6.3 Thests Contribution

Previous attempts at dealing with the limitations associated with Ada’s tasking model were
aimed toward working around these limitations or changing the language. The work-arounds uti-
lize pragmas and other inefficient constructs which can slow down program execution. The rec-
ommended changes to Ada may prove to be very slow at coming about. However, identification
of an Ada compiler’s task scheduling algorithm permits selection of the compiler which efficiently
meets some scheduling requirements, without having to wait for Ada language changes to occur.
The results of this research have demonstrated that detecting an Ada compiler’s task scheduling
algorithm is possible. And, it has provided a program which can be used by DoD MCCR system

designers to select an Ada compiler which meets their task sckeduling needs.

6-4

Appendix A. Appendiz A: Predicted Gantt Charts for Test Cases 1 through 27

[Test Case | (Cq =Cg,A4 = Apg, P4 = Pg)]

Algorithm Expected Schedule when S4 < Sp

RR Time | 0 1 213 4 |5 (6|78
Task A B A B A B

FCFS Time | 0 1 {2}|3|4|5|6[7]8
Task A A A B B B

SJF Time | 0 1 2 3 4 5 |6(7|8
Task | A| A| A[B{ B| B

Priority Time | O 1 2134 |5|6[78
Task A A A B B B

Table A.1. Predicted Gantt Chart (S4 < Sg) for Test Case 1

[Test Case | (Ca = Cpg,As = Ap, P4 = Pp)

Algorithm Expected Schedule when Sg < S,

RR Time { 0 1 23| 4 5 (6|78
Task [B| A[B| A| B| A

FCFS Time | 0 1 2 3 4 5S|6|7]8
Task B B Bl A} A| A

SJF Time | 0 11 2{3|4|5|6|[7]8
Task B B Bi A A| A

Priority Time | 0 | 1 123|415 [6|7]|8
Task B B B A| A| A

Table A.2. Predicted Gantt Chart (Sg < S4) for Test Case 1

Test Case 2 (C4 = Cpg, A4 = Ap, P4 > Pp)

Algorithm Expected Schedule

RR Time | 0 1 213)]4)5]/[6]7
Task [[A] A| A| B| B| B

FCFS Time | 0 1 23| 415|617
Task Al AJ A| B| B B

SJF Time | 0 1 213|145]|6j7
Task | A|f A A| B[B} B

Priority Time | 0 1{213|[4({5]6)7
Task [A| A|] A| B[B| B

Table A.3. Predicted Gantt Chart for Test Case 2

(Test Case 3 (C4 = Cp,As = Ap, P4 < Pp)

Algorithm Expected Schedule

RR Tme| 0] 1|23 |45 (6|7
Task [B} B| B| A| A| A

FCFS Time | 0 {1 [2 [3 [4|5 [6]|7
Task (B| B[B| A| A| A

SIF Tme | 0] 1]| 2}3]|4]5 |67
Task | B| B| B|] A| A| A

Priority Time | 0 | 1 | 23|45 (6|7
Task B{ B B| A| A| A

Table A.4. Predicted Gantt Chart for Test Case 3

{ Test Case 4 (Cq = Cp,As < Ap,Pa = Pg)

Algorithm Expected Schedule

RR Tme | 0 | 1 | 2|3 |45 16][7
Task | A| B| A| B| A[B

FCFS Time | 0 | 1 | 23|45]|6][7
Task Al Al A| Bl B| B

SJF Time | 0 | 11 213|415 167
Task A| AjJ]A| B| B| B

Priority Time | 0 | 1 | 2| 3| 4/!5 (67
Task | A| Af A| B|{ B[B

Table A.5. Predicted Gantt Chart for Test Case 4

, T&ﬁaseS(CA=CB,AA<AB,PA>_PB)

Algorithm | Expected Schedule

RR Time | 0 | 112 (3]4]5 6|7
Task A| Al A| B| B| B

FCFS Time [0 | 1]2 |3] 45617
Task | A| A| A|{ B| B| B

SIF Time | 0 | 1 | 2 |3[4[5[6][7
Task | A| A| A| B|] B| B

Priority Time | 0 | 1 | 2]3] 4|5 (6}]7
Task | A| A|] A| B|] B| B

Table A.6. Predicted Gantt Chart for Test Case 5

I Test Caseﬁ(CA=CB,AA<AB,PA<PB) J

Algorithm Expected Schedule

RR Time | 0 1 2 3 4 5 ({678
Task | A| B B| B| A | A

FCFS Tme| ¢ | 1 23|45][6[|7]8
Task | A] A A[B|] B| B

SIF Time [0 [1 [2345 |6]7][3]
Task | A| A| A|[B|] B[B

Priority Time | 0 11213145 (6]7]8
Task [A| B B| Bl A[A

Table A.7. Predicted Gantt Chart for Test Case 6

[Test Case 7 (Cq4 = Cp,As > Ap, P4 = Pg)]

Algorithm Expected Schedule

RR Time | 0 | 1]2 {3]4]|5/|6[7]38
Task B| A|f B| A B| A

FCFS Time { 0 | 1 |23]| 4]5|6[7]8
Task | B B B| A| A| A

SIF Tme] 0] 1123 }]4][5}6]7]8
Task B| B| B| A| A| A

Priority Time | 0 | 1 | 2 [3[4]|516[7I]8
Task | B B] Bjf A|] A| A |

Table A.8. Predicted Gantt Chart for Test Case 7

| Test Case 8 (Cq = Cg,Aq > Ap, Pa > Pp) |

Algorithm Expected Schedule

RR Time | 0 | 1 |2 3] 4}5([6]7]8
Task | B] A|] A| A| B| B

FCFS Time | 0 | 1] 2|3} 4}5/|[6[7]|8
Task | B| B B| A| A| A

SJF Time | 0] 1 [2] 3[4]5]6]7]8
Task By B| Bl A|] A} A

Priority Time | 0 112345 ([6(7]8
Task B| A|] A| A| B| B

Table A.9. Predicted Gantt Chart for Test Case 8

A-4

L Test Case9(CA=CB,AA>AB,PA<PB) J

Algorithm Expected Schedule

RR Tme | 0 | 1123]4]5 6[7]8
Task Bl B}y B|] A| A| A

FCFS Time | 0 | 1 {2 |3 ([4]5[|[6]7]38
Task | B| B[Bf A| A A

SJF Time| 01 1|23 |45 (|6]7[38
Task Bi{B| B|] A| A|] A

Priority Time | 0 | 1 |23 [4]|5 (6|78
Task [B] B] B A A A

Table A.10. Predicted Gantt Chart for Test Case 9

[Test Case 10 (Cx = 2Cp, As = Ap, P4 = Ppy) l

Algorithm Expected € :hedule when S4 < Sp

RR Time| 0|1 [2]|3]14|5(6]|7]|8
Task | A|B|A|B|[A|[B|[A|]A[A

FCFS Time | 0 |1]2!13|4[|5|6[7)8
Task [A[A|AJA|JA]A[B|[B|[B

SJF Time [0 1123|456 7]S8
Task not applicable

Priority Time | 0|1 [|2]314|[5([6]| 718
Task | A|A{A|[|A|A|A[B|B|B

Table A.11. Predicted Gantt Chart (S4 < Sg) for Test Case 10

l Ii'a Case 10 (CA=2CB.AA=AB,PAE_PB)]

Algorithm Expected Schedule when S¢c < Sy

RR Time {0 | 112]|3[415]|6[7]S8
Task | B/A|BJA|B|A[A]JA]A

FCFS Time | 0[1[|2]13|4|5]6}7]|38
Task | B{B|B[A|A|JA[A|A]A

SJF Time |0 | 1]|]2]|13[4|5{6]7)8
Task [B| B{B|A|[A]JAJA|[A{A

Priority Time ([0 |1 [2{3]|]4(5[6]|7]38
Task { B{B|BjA|JA[A[A]A]A

Table A.12. Predicted Gantt Cha.t (Sg < S4) for Test Case 10

A-5

[Test Case 11 (C4 = 2Cg, Aq = Ap, P4 > Pg)

Algorithm Expected Schedule

RR Time | 0 1 2 31 4 3 6 7 8
Task A A A A A A B B B8

FCFS Tme | 0 (1 | 2|34 |5 |6 |78
Task Al A A Al A A B B B

SJF Time | O 1 2 3 4 5 6 7 3
Task Al Al Al A}l A A B B B

Priority Time | 0 1 23 | 4 5,6 |78
Task Al A| A|] Al Aj A B| B| B

Table A.13. Predicted Gantt Chart for Test Case 11
[Test Case 12 (C4 = 2Cg, Aa = A, P4 < Pg)

Algorithm Expected Schedule

RR Time | 0 | 1|2 ([3]4 |5 (|61} 7] 38
Task B B B A A A A A A

FCFS Time | 0 1 2 3 4 5 6 7 8
Task B! B Bl A A| A| Al A A

SJF Time | o 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Priority Time | 0 1 2 3 4 5 6 7 8
Task B B B A A A A A A

Table A.14. Predicted Gantt Chart for Test Case 12
I Test Case 13 (CA=2CB.AA<AB,PA=PB) J

Algorithm Expected Schedule

RR Time| 0| 1[2]314]5]6]7]8
Task A B A B A B, A A A

FCFS Tme| 0] 1| 2|3 |45 6] 7] 8
Task A| Al Al A A|] A| B| B| B

SJF Time | 0 1 2 3 4 5 6 7 8
Task A A A A A A B B B

Priority Time |0 | 1 | 2|3}14]5]|6 |78
Task A A A A A A B B B

Table A.15. Predicted Gantt Chart for Test Case 13

A-6

[Test Case 14 (C4 = 2Cp, As < A, P4 > Pg)]
Algorithm Expected Schedule
RR Timet 6 | 1 {2 ;3| 4]|5]|6/|7]8
Task [Al AJA[AJA| A B[B| B
FCFS Tme | 0} 1] 21314]5]6]| 718
Task Al A|] A| A A|l A| B| B| B
SIF Time | 0} 1|2 |34 (5 ([6]7]38
Task A A A A A A B B B
Priority Time | 0 1 2 (3,4 516|738
Task A A A A A A B B B
Table A.16. Predicted Gantt Chart for Test Case 14
| Test Case 15 (C4 = 2Cg,As < A, P4 < Pg) |
Algorithm Expected Schedule
RR Time| 0 | 1]2]3]4]5]6]7]38
Task A B B B A| A| A| A A
FCFS Time | 0 | 1 |23 {45 |6]7]|38
Task A Aj Al Al A| A B B B
SJF Time | O 1 2 3 4 5 6 7 8
Task | A| A|] A| A| A| A] B{ B| B
Priority Time | 0 1 2131415 6 | 71 8
Task A B B B Al A| A} A A
Table A.17. Predicted Gantt Chart for Test Case 15
| Test Case 16 (C4 = 2Cp, As > A, P4 = Ppg) |
Algorithm Expected Schedule
RR Time| 0 [1 |23 (4|56 7]8
Task B A B A B Al A A A
FCFS Time | 0 {1 | 23|45 (|[6]|7]38
Task | B B| B| A A] A| A| A| A
SIF Time | 0 | 1 | 23|45]|6]| 7|8
Task B| B| B|] A| A| A| A| A]| A
Priority Time | 0 11213145]6)] 7|8
Task B B B Al A Al A A A

Table A.18. Predicted Gantt Chart for Test Case 16

| Test Case 17 (Cq =2Cp, Aa > Ap, P4 > Pp)

[|

Algorithm Expected Schedule
RR Time| 0 | 1} 23145617138
Task Bl A|] A| A| Al A| A| B B
FCFS Tmej 0| 1}{2 3 |4|5]|6]7]8
Task B B B A A A A A A
SJF Time| 0| 1| 2] 3/ 4|5] 6] 7] 8
Task B B B A A A A A A
Priority Time | 0 1 213)]4]5]6 71 8
Task B A A A A A A B B
Table A.19. Predicted Gantt Chart for Test Case 17
r Test Case 18 (Ca = 2Cp,As > Ap, P4 < Pp) l
Algorithm Expected Schedule
RR Time | 0 | 1123|456 7] 8
Task B B B A A A A A A
FCFS Time | 0 | 1 | 2345|678
Task Bl B B| A|] A|] A| A| A| A
SIF Tme| 0] 1|23 4]|]5|6] 7] 8
Task B B B A A A A A A
Priority Time | O | 1 | 2| 3| 45|61 7]S8
Task B|{ B! B| A| A| Al A| A| A
Table A.20. Predicted Gantt Chart for Test Case 18
[Test Case 19 (2CA=CB|AA=A81PA=PB) J
A" rithm Expected Schedule when S4 < Sp
R Time |0 1]2|3]4]5]6]7]38
Task | A/|B{A|B|A]B|B|B|B
FCFS Time | 0 {1]2]|3]|]4|5]|6]|7]|38
Task |A|A[A{B|B|B|B|[B|B
SJF Time |0 | 1]2]3]|4{5]|6]7]|38
Task | A[|]A|[|A|[B|(B}/B|[(B|B|B
Priority “e|l0| 1213456178
Task |A[|A|[|A|B|[(B!{B[B|B|B

Table A.21. Predicted Gantt Chart (S4 < S_) for Test Case 19

A-8

[Test Case 19 (2C4 = Cg, Ax = Ap, P4 = Pg)]

Algorithm Expected Schedule when Sg < S4

RR Time | 0| 1|2 [3}4]5]|6]|7]8
Task [BIA|B|{A[B|A[B|[B[|B

FCFS Time | O [1 } 2|3 (4|56 |78
Task | B{B{B|{B|B|[BjA|A[A

SJF Tme {0 1]2!314(5|617]S8
Task [B{B[(B|[B|B|[BlAJA[A

Priority Tme v |1 (|2{3]4f(5]6]7]|38
Task ([B{B|[B{B|[B|[BJAJAJA

Table A.22. Predicted Gantt Chart (Sg < S,) for Test Case 19

Test Case 20 (2C4 = Cg, Aa = A, P4 > Pg)

Algorithm Expected Schedule

RR Time | 0 1 2 3 | 4 5 6 7| 8
Task | A| A A|] B B| B| B| B| B

FCFS Time | 0] 1 |2]314([5[6]| 718
Task | A| A|] A| B] B| B] B}| B| B

SIF Time | 0 } 1 [2 | 3 }4]5)6} 7]S8
Task | A| A A| B| B|] B| B| B[B

Priority Time| 0 | 1] 2| 34|56]|7]|38
Task Aj Al A B({B|{B; B| B| B

Table A.23. Predicted Gantt Chart for Test Case 20

Teit Case 21 (2C4 = Cpg,As = Ap, P4 < Pp)

Algorithm | Expected Schedule

RR Tme| 0 1]2]|3|4([5{6]7]8
Task B| B} By B| B| B| A| A] A

FCFS Time | 0 [1]2 3| 4|5 (6] 7]8
Task B| B|B|B| B|B|] A{ A| A

SJF Time| 0} 112)34 (56| 7] 8
Task B| B[B} B| B| B| A| A] A

Priority Time | 0 1 213|456 | 7] 8
Task | B| Bl B B| B| B] A| A| A

Table A.24. Predicted Gantt Chart for Test Case 21

[Test Case 22 (2CA=CB,AA<A3,PA=PB) J
Algorithm Expected Schedule
RR Tme| 0|1]2 ([3]4[5 6] 7718
Task A| B| A| B| A| B| B|] B| B
FCFS Time | 0 112131 4]|5}6]|[7]8
Task [A A A B B[B| B B| B|
SJF Tme | 0| 1 {2 |3{4[5]|6]7]38
Task Aj Al A| B|B| B B| BB
Priority Time | 0 11213 |4{5|6/[7]8
Task Al A A B B B B B B
Table A.25. Predicted Gantt Chart for Test Case 22
{ Test Case 23 (2C4 = Cp, Aa < Ap, P4 > Pg) B
Algorithm Expected Schedule
RR Time [0 J 1 [23 }{4]5|6(7]38
Task A|l Al Ay B| B|B| BjB| B
FCFS Time | 0 1 [23| 4|56 (|7]38
Task | A A A[B| B| B! B| B|{ B
SJF Tme | 0 [1 |2 {3}l4]|5(61| 718
Task A|A| A} B| B|B{B| B{ B
Priority Time | 0 1 231415678
Task | A|] A A| B| B| B{ B| B| B
Table A.26. Predicted Gantt Chart for Test Case 23
I Test Case 24 (2C4 = Cg,A,L< Ap, P4 < Pg) I
Algorithm Expected Schedule
RR Time{ 0|1]| 2[3]4}5[6] 7|38
Task | A B| B| B| Bf B| B|] A| A
FCFS Time [0 | 1 |2 [3]4|5 6|78
Task | A| A| A B| B| B| B[B| B
SJF Time | 0 11231456 71|38
Task Al Al A| B| B} B|B| B| B
Priority Time | O 1213415678
Task A{yB| B| B| B] B! B| A| A

Table A.27. Predicted Gantt Chart for Test Case 24

A-10

Test Case 25 (2C4 = Cp,Aa > Ap, P4 = Pp) i
Algorithm Expected Schedule
RR Time | 0 | 1 {2]| 3|4 [5]6] 738
Task | B| A| B A| B] Al B B| B
FCFS Time | 0] 1 [2]3]4]5][6[7]8
Task | B! B B! B| B[B] A| A A
SJF Time | 0 112 (3 4|5 |6¢;7]8
Task | B{ B| Bl B Bl B Al A A
Priority Time | 0 1123|456 |78
Task B B B B B Bl A A A
Table A.28. Predicted Gantt Chart for Test Case 25
Test Case 26 (2C4 = Cpg, Aq > Ap, Pa > Pg)]
Algorithm Expected Schedule
RR Time | 0 1 2 3 4 5 6 7 8
Task B| A|] A| A| Bj B| B B B
FCFS Time [0 | 1|2 |3]4|5]6]| 7718
Task B{ B| B! BB B| A| A A
SJF Time | 0 1 2 3 4 3 6 7 8
Task B| B| By B| B| B|] A|] A|] A
Priority Time | 0 112]|3]4|5)]6]| 718
Task B| A|] A] A| B} B| B B B
Table A.29. Predicted Gantt Chart for Test Case 26
Test Case 27 (2C4 = Cp,Aa > Ap, P4 < Pg) J
Algorithm Expected Schedule
RR Tme| 0 | 1 |23 |4]5]6] 7|8
Task | B B| B} B| B| B| A| A| A
FCFS Tme | 0| 1|23 (4|56 7]S8
Task By B|B|[B|B|B| A A[| A
SJF Time| 0|1 [2]|3]4]|5|[6][|7]S8
Task B| Bl B] B| B|[B|] A[A[|] A
Priority Time | 0 1]12]3)]4,5)F6 71(8
Task B| B| B|{B{B|B|] A| A{ A

Table A.30. Predicted Gantt Chart for Test Case 27

A-11

Appendix B. Appendiz B: Test Case Ezecution Results

B-1

Actual Results of Running Test Cases 1-9
using Alsys PC AT Ada Compiler, Version 3.2

with a Slice Option of 0 seconds

Test Actual Measured | Normalized | F; — S; Execution
Case Results Results Sequence

l Sa 37488.7890 6.869 6.521 Sg—Fg—54—-Fu
Fy 37495.7100 13.79
Sp 37481.9200 0 6.869
Fg 37488.7890 6.869

2 Sa 37543.9300 .05 6.87 Sg—-Ss—F4—-Fpg
Fa 37550.8000 6.92
Sgp 37543.8800 0 13.779
Fg 37557.6590 13.779

3 Sa 37594.3500 0 13.79 Si—-Sg—-Fg—Fq
Fa 37608.1400 13.79
Sg 37594.4600 11 6.869
Fgp 37601.3290 6.979

4 Sa 37612.0900 0 1363 | Sa—-Sg—-Fg - F4
Fa 37625.7200 13.63
Sg 37612.1490 .059 6.811
Fg 37618.9600 6.87

3 Sa 37629.7790 0 6.811 Sa~-Fi-5Sg—Fpg
Fu 37636.5900 6.811
Sp 37636.5900 6.811 6.809
Fg 37643.3990 13.62

B Sa 37678.6090 0 1362 | Sx - Sg—Fg— F4
Fa 37692.2290 13.62
Sg 37678.7700 .161 6.809
Fg 37685.5790 6.97

7 Sa 37696.2890 .109 6.82 Sg—-Sa—-F4—-Fp
Fa 37703.1090 6.9299
Sg 37696.1800 0 13.63
Fg 37709.8100 13.63

3 Sa 37713.9300 17 6.809 Sg~>Sy—-F4—-Fpg
Fa 37720.7390 6.979
S 37713.7600 0 13.679
Fg 37727.4390 13.679

9 Sa 37738.2600 6.811 6809 | Sp—Fg—5S4—-F4
Fa 37745.0690 13.62
Sg 37731.4490 0 6.811
Fg 37738.2600 6.811

Table B.1. Alsys PC AT Ada Compiler Resulits

B-2

Actual Results of Running Test Cases 10-18
using Alsys PC AT Ada Compiler, Version 3.2

with a Shice Option of 0 seconds

Test Actual Measured | Normalized | F; - S; Executiou
| Case Results Results Sequence
[10 | Si 37993.2200 6.92 13720 | Sp - Fg = Sa - Fu
Fq 38006.9490 20.649
Sg 37986.3000 0 6.92
Fg 37993.2200 6.92
11 Sa 38011.0200 .06 13.73 Sp~Ss—-Fi—-Fp
Fu 38024.7500 13.79
Sp 38010.9600 0 20.649
| Fg 38031.6090 20.649
12 Sa 38062.0390 0 20601 | S4 - Sg - Fg— Fy4
Fa 38082.6400 20.601
Y 38062.1000 061 6.36
Fg 38068.9600 6.921
13 Sa 38091.5390 0 20.49 Sa—-Sg—-Fg—-F,
Fu 38112.0290 20.49
Sp 38091.5900 .051 6.809
Fp 38098.3990 6.86
14 Sa 38133.5000 0 13.68 Sa—-Fis—-5g-Fpg
Fa 38147.1800 13.68
_ﬁp 38147.1800 13.68 6.809
Fp 38153.9890 20.489
135 Sa 38157.9390 0 20491 | Sy~ Sgp - Fg - F,
F4 38178.4300 20.491
5 38158.1090 17 6.811
Fg 38164.9200 6.981
16 | Sa 38182.5000 11 1367 | Sg-~Sa - Fa-Fp
Fa 38196.1700 13.78
Sg 38182.3900 0 20.54
Fg 38202.9300 20.54
17 | Sa 38310.1990 17 1367 | Sg—Sa—-F4—-Fp
Fa 38323.8690 13.84
Sg 38310.0290 0 20.54
Fp 38330.5690 20.54
18 Sa 38341.2790 6.809 13681 | Sg — Fg — 5S4 — Fa
Fa 38354.9600 20.49
S 38334.4700 0 6.809
Fg 38341.2790 6.809

Table B.2. Alsys PC AT Ada Compiler Results (Cont’'d)

B-3

Actual Results of Running Test Cases 19-27
using Alsys PC AT Ada Comptler, Version 3.2

with a Slice Option of 0 seconds

Test Actuai Measured | Normalized | F; — S; Execution
Case Results Results Sequence

19 1 S, 38549.1800 13.79 6859 | Sg—Fp -S4 —-Fa
Fq 38556.0390 20.649
Sg 38535.3900 0 13.79
Fp 38549.1800 13.79

20 Sa 38560.0000 .061 6.859 Sg—Sp—-Fa—-Fp
Fa 38566.8590 6.92
Ss 38559.6490 0 20.71
Fg 38580.6490 20.71

21 Sa 38588.8290 0 2071 | Sy —Sg—-Fg~F,
Fa 38609.5390 20.71
Sg 38588.8900 .061 13.729
Fg 38602.6190 13.79

22 Sa 38613.0390 0 20539 | Sp - Sg - Fg— F4
Fya 38634.0390 20.539
S 38613.2290 .05 13.679
Fp 38627.2290 13.729

23 Sa 38712.1990 0 6.811 Sa—F4-Sg-Fp
Fa 38719.0100 6.811
Sp 38719.0100 6.811 13.729
Fg 38732.7390 20.54

24 Sa 38743.7790 0 20601 | Sy —Sg - Fg - Fy
Fa 38764.3800 20.601
Sp 38743.9390 .16 13.68
Fp 38757.6190 13.84

25 | Sa 38768.8800 11 6.809 | Sg—Sqa—Fs—-Fp
Fu 38775.6890 6.919
Sg 38768.7700 0 20.54
Fp 38789.3100 20.54

26 | Su 38793.6000 A7 6809 | Sg—Sa—Fa—~Fp
Fa 38800.4090 6.979
S 38793.4300 0 20.599
Fg 38814.0290 20.599

27 | S4 38844.0690 13.67 6.87 Sg—Fp—~Sa—Fa
Fa 38850.9390 20.54
Sg 38830.3990 0 13.67
Fp 38844.0690 13.87 .

Table B.3. Alsys PC AT Ada Compiler Results (Cont’d)

B-4

First Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 0 seconds

{ Parameter | Actual Measured | Normalized F; - S;
Results Results

Sa 54053.1590 159 180.54
Fq 54233.6990 180.699

Sg 54087.7600 34.76 173.679
Fg 54261.4390 208.439

Sc 54087.5490 34.649 166.871
Fe 54254.5200 201.52

So 54073.8690 20.869 180.54
Fp 54254.4090 201.409

Sg 54066.9490 13.949 173.67
Fe 54240.6190 187.619

Sr 54053.0000 0 166.92
Fp 54219.9200 166.92

Execution Sequence: Sp — Sq4 —Sg—Sp~Sc-Sg - Fp~F4s-Fg-Fp—Fc - Fg

Table B.4. Alsys PC AT Ada Compiler Results (Cont’d)

Second Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 0 seconds

{ Parameter | Actual Measured | Normalized F, - S;
Results Results

Sa 54589.6700 11 180.54
Fa 54470.2100 180.65

Ss 54324.3290 34.769 173.671
Fg 54498.0000 208.44

Sc 54324.1590 34.599 166.87
Fe 54491.0290 201.469

Sp 54310.3800 20.82 180.54
Fp 54490.9200 201.36

Sg 54303.4600 13.9 173.67
Fg £4477.1300 187.57

Sp 54289.5600 0 166.86
Fr 54456.4200 166.86

Execution Sequence: Sp - Sy - Sg -Sp—-Sc—-Sg—Fp—-Fx-Fg—Fp—-Fc -~ Fp

Table B.5. Alsys PC AT Ada Compiler Results (Cont’d)

B-5

Third Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 0 seconds

Parameter | Actual Measured | Normalized ’ F;, - S;
Results Results
Sa 54523.2100 11 180.54
Fa 54703.7500 180.65
Sp 54557.8190 34.719 173.67
Fg 54731.4890 208.389
Se 54557.7100 34.61 166.859
Fe 54724.5690 201.469
Sp 54543.9200 20.82 180.54
T o 54724.4600 201 36
Se 54537.0000 13.9 173.67
Fg 54710.6700 187.57
Sr 54523.1000 0 166.87
Fp 54689.9700 166.87

Execution Sequence: Sp — S4 — Sg — Sp -~ S¢ —bb_ fp—F4—-Fg—-Fp—-Fc—-Fpg

Table B.6. Alsys PC AT Ada Compiler Results (Cont’d)

B-6

Actual Results of Running Test Cases 1-9
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 50 ms.

Test Actual Measured { Normalized | F; - S; Execution
Case Results Results Sequence

1 Sa 47543.3900 111 13.95 | Sg—S4 - Fg - F4
F4 47557.3400 14.061
Ss 47543.2790 0 13.95
Fg 47557.2290 13.95

2 Sa 47561.3000 .061 6.859 Sp—Ss-F4-Fp
Fu 47568.1590 6.92
Sg 47561.2390 0 13.79
Fg 47575.0290 13.79

3 Sa 47677.8990 0 13.851 | Sy —Sg - Fg—-Fa
Fa 47691.7500 13.851
Sg 47677.899C .061 6.869
Fg 417684.8290 6.93

4 Sa 47701.9600 0 13.729 | Sq4 - Sg - Fg -~ F,4
Fu 47715.6890 13.729
Sg 47702.0200 .06 13.68
Fp 47715.6400 13.62

5 Sa 47726.3500 0 6809 | Sqa—Fs—Sg - Fp
Fq | 477331590 6.809
S 47733.1590 6.809 6.87
Fp 47740.0290 13.679

6 Sa 47760.6800 0 13.84 | Sy —Sg— Fg - Fau
Fu 47774.5200 13.84
Ss 47760.8400 .16 6.809
Fg 47767.6490 6.969

7 Sa 47778.5290 .109 1362 | Sg—Sa—Fg— Fau
Fu 47792.0900 13.729
Sp 47778.4200 0 13.76
Fpg 47792.0900 13.76

8 Sa 47826.5900 .16 6.81 Sg—-Sa—-Fy~-Fp
Fu 47833.5600 6.97
S 47826.5900 0 13.67
Fg 47840.2600 13.67

9 Sa 47850.9700 6.811 6.87 Sg—Fg —Sa—-Fy4
Fa 47857.8400 13.681°
S 47844.1590 0 6.811
Fpg 47850.9700 6.811

Table B.7. Alsys PC AT Ada Compiler Results (Cont’d)

B-7

Actual Results of Running Test Cases 10-18
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 50 ms.

Test Actual Measured | Normalized | F; — S; Execution
Case Resvlts Results Sequence

10 Sa 48112.1990 .109 20.761 | Sp —Ss - Fp - F,
Fy 48132.9600 20.87
S 48112.0900 0 14.01
Fg 48126.1000 14.01

11 Sa 48136.8590 .049 13.731 | Sg -S4 — Fa— FB
Fq 48150.5900 13.78
S 48136.8100 0 20.65
Fg 48157.4600 20.65

12 Sa 48204.8590 0 20.65 Sis—-Sg—-Fg—Fy4
Fa 48225.5100 20.65
Sp 48204.9090 .05 6.87
Fg 48211.7790 6.92

13 Sa 48229.6300 0 20599 | Sy —Sg - Fp—F,
Fa 48250.2290 20.599
Sg 48229.6890 .059 13.731
Fg 48243.4200 13.79

14 Sa 48261.5390 0 13681 | Sy — F4 -~ Sg - Fp
Fa 48275.2200 13.681
Sn 48275.2200 13.681 6.809
Fp 48282.0290 20.49

15 Sa 48338.2700 0 20549 | Sqa—-Sp—-Fg—Fj
Fa 48358.8190 20.549
Se 48338.4390 .169 6.811
Fg 48345.2500 6.98

16 Sa 48362.9390 11 20.481 | Sp ~Sa — Fg— Fyu
Fa 48383.4200 20.591
Sg 48362.8290 0 13.62
Fg 48376.4490 13.62

17 Sa 48387.4300 .16 13.679 | Sp —=Sa - Fa - Fp
Fa 48401.1090 13.839
Sa 48387.2700 0 20.54
Fg 48407.8100 20.54

18 Sa 48425.1700 6.811 13.67 Sg—Fg -S4 - Fy4
Fa 48438.8400 20.481
Spg 48418.3590 0 6.811

[Fg 48425.1700 6.811

Table B.8. Alsys PC AT Ada Compiler Results (Cont’d)

Actual Results of Running Test Cases 19-27
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice of 50 ms.

Test Actual Measured | Normalized | F; - S Execution
Case Results Results Sequence

19 Sa 48657.6090 109 13.84 S-Sy -F4—-Fpg
Fu 48671.4490 13.949
Sg 48657.5000 0 20.76
Fg 48678.2600 20.76

20 Sa 48682.3290 .059 6.86 Sp—Sis—-F4~Fp
Fu 48689.1890 6.919
Si 48682.2700 0 20.709
Fg 48702.9790 20.709

21 | S, 48715.2290 0 20.701 | Sa— Sg — Fg - Fa

Fa 48735.9300 20.701
Sg 48715.2790 .05 13.79
Fg 48729.0690 13.84

22 Sa 48739.8900 0 13.729 | S4 —Sg— Fa - Fs
Fu 48753.6190 13.729
S 48739.9390 .049 20.6
Fg 48760.5390 20.649

23 Sa 48786.0290 0 6.811 Sa—-F4~-Sg-Fpg
Fa 48792.8400 6.811
Sg 48792.8400 6.811 13.729
Fg 48806.5690 20.54

24 Sa 48861.2700 0 20599 | Sq4 —Sg - Fg— Fy
Fu 48881.8690 20.599
Sg 48861.4390 .169 13.731
Fs 48875.1700 13.9

25 | Sa 48885.8800 A1 13.729 | Sg —Sa — Fa - Fp
Fa 48899.4200 13.839
Sg 48885.7700 0 20.65
Fg 48906.4200 20.65

26 Sa 48921.0900 17 6.809 Sg—Sa-Fa-Fp
Fyu 48927.8990 6.979
Sg 48920.9200 0 20.6
Fp 48941.5200 20.6

27 Sa 48959.2100 13.731 6.81 Sp—-Fg -S4 —-F,4
Fa 48966.0200 20.541
Ss 48945.4790 0 13.731
Fg 48959.2100 13.731

Table B.9. Alsys PC AT Ada Compiler Results (Cont’d)

First Run of Test Case 28

using Alsys PC AT Ada Compaler, Version 3.2

with a Slice Option of 50 ms.

Parameter { Actual Measured | Normalized F;, - S;
Results Results

Sa 54826.3500 111 209.92
F4 55036.2700 210.031
Sg 54826.6190 .38 140.67
Fg 54967.2890 141.05
Sc 54826.5690 .33 4.451
Fe 54831.0200 4.781
Sp 54826.5100 271 209.399
Fp 55036.1090 209.87
Se 54826.4600 221 140.439
Fg 54966.8990 140.66
Sp 54826.2390 0 4.061
Frp 54830.3000 4.061

Execution Sequence: Sp — Sy ~Sg—Sp -Sc-Sp~Fp~Fc - Fg—-—Fg—-Fp —Fa,

Table B.10. Alsys PC AT Ada Compiler Resuits (Cont’d)

Second Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 50 ms.
Parameter | Actual Measured | Normalized Fi -5
Results Results
Sa 55051.8190 17 209.701
Fa 55261.5200 209.871
Sg 55052.0390 .39 140.94
Fg 55192.9790 141.33
Sc 55051.9790 .33 4.51
Fe 55056.4890 4.84
Sp 55051.9300 .281 209.759
Fp 55261.6890 210.04
Sge 55051.8690 .22 140.721
FEg 55192.5900 140.941
Sr 55051.6490 0 4.401
Fr 55056.0500 4.401
Execution Sequence: Sp — Sy —Sg—Sp —-Sc -Sp—-Fr-Fc-Fg~-Fpg—-Fa-Fp

Table B.11. Alsys PC AT Ada Compiler Results (Cont’d)

B-10

Third Run of Test Case 28
using Alsys PC AT Ada Compiler, Version 3.2
with a Slice Option of 50 ms.

Parameter | Actual Measured | Normalized Fi-S;
Results Results

Sa 55271.7890 .159 209.761
Fa 55481.5500 209.92
Se 55272.0100 .38 140.779
Fg 55412.7890 141.159
Sc 55271.9600 .33 4.5
Fe 55276.4600 4.83
Sp 55271.8990 .269 209.76
Fp 55481.6590 210.029
SEg 55271.8500 .22 140.719
Fg 55412.5690 140.939
SF 55271.6300 0 4.39
Fr 55276.0200 4.39

Execution Sequence: Sp - Sy - Sg-Sp-Sc —-Sg—-Fr-Fc—-Fg—-Fg—-Fa-Fp

Table B.12. Alsys PC AT Ada Compiler Results (Cont’d)

B-11

Actual Results of Running Test Cases 1-9
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME_SLICE

Test Actual Measured | Normalized | F; — S, Execution
Case Results Results Sequence

1 | S4 44935.5800 0 39 | Sq- Fa4-Sg - Fg
Fa 44935.9700 39
Ss 44935.9700 39 38
Fg 44936.3500 7

2 | S4 44941.1900 02 38 | Sg-Sa-F4-Fg
Fa 44941.5700 4
S8 44941.1700 0 76
Fg 44941.9300 76

3 | Sa 44946.0800 0 77 | Sa—Sp- Fp - Fa
Fa 44946.8500 77
S 44946.1000 02 38
Fg 44946.4800 4

4 | Sa 44952.2900 0 4 Sua-F4-Sg - Fn
Fa 44952.6900 4
Sg 44952.6900 4 39
Fs 44953.0800 79

5 | Sa 44958.2200 0 38 | Si-F1-Sg-Fg
Fa 44958 6000 38
Sg 44958.6000 38 4
Fg 44959.0000 78

6 | Sa 44964.7600 0 77 | Sa—Sp - Fg - Fa
Fa 44965.5300 77
Sg 44964.7800 02 37
Fg 44965.1500 39

7 | Sa 44970.0300 37 38 | Sp—Fg-54-Fa
Fa 44970.4100 75
Ss 44969.6600 0 37
Fg 44970.0300 37

8 | Sa 44974.3100 02 37 | Sg—Sa-Fa-Fg
Fa 44974.6800 39
Ss 44974.2900 0 5 7
Fg 44975.0400 5

9 | Sa 44980.1800 38 38 | Sg—Fp—Sa-Fa
Fa 44980.5600 76
Ss 44979.8000 0 38
Fg 44980.1800 38

Table B.13. VAX Ada Compiler Results

B-12

Actual Results of Running Test Cases 10-18
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME_SLICE

Test Actual Measured | Normalized | F; — S; Execution
Case Results Results Sequence

10 S4 44996.9300 0 .76 Sa—~-F4y-Sg—-Fpg
F4 44997.6900 .76
Sp 44997.6900 .76 37
Fg 44998.0600 1.13

11 Sa 45007.6600 .02 .75 Sg~Sys—F4—-rpg
Fa 45008.4100 ki
Sp 45007.6400 0 1.15
Fg 45008.7900 1.15

12 Sa 45013.1600 0 1.14 Sy —-Sp—Fg—-F4
Fa 45014.3000 1.14
Sg 45013.1800 .02 37
Fg 45013.5500 .39

13 | S, 45020.2500 0 .83 Sa—-F4—-Sg-Fp
F4 45021 0800 .83
Sg 45021.0800 .83 .39
Fp 45021.4700 1.22

14 | Sa 45027.9900 0 75 Sas-Fa-S5Sg-Fp
Fa 45028.7400 75
Sgp 45028.7400 .75 .39
Fg 45029.1300 1.14

15 Sa 45034.4700 0 1.25 Sa—Sp—-Fg—-F,
Fa 45035.7200 1.25
Sp 45034.4900 .02 45
Fg 45034.9400 .47

16 Sa 45055.9700 39 .76 Sp—Fp -S4 —-F,4
Fa 45056.7300 1.15
Sp 45055.5800 0 .38
Fg 45055.9600 .38

17 | Su 45062.8900 .02 a7 Sp—Sa—-Fs—-Fp
Fa 45063.6600 79
Sp 45062.8700 0 1.16
Fp 45064.0300 1.16

18 | Sa 45069.3000 .38 .76 Sg—-Fg—-Sa—-Fa
Fa 45070.0600 1.14
S 45068.9200 0 .38
Fg 45069.3000 .38

Table B.14. VAX Ada Compiler Results (Cont’d)

B-13

Actual Results of Running Test Cases 19-27
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME_SLICE

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

19 | Sa 45073.7700 0 38 | Sa—Fa-5p - Fg
Fa 45074.1500 .38
Sg 45074.1500 .38 75
Fg 45074.9000 1.13

20 Sa 45078.1800 .02 37 Sg-Sia~-F4 s
Fa 45078.5500 .39
Ss 45078.1600 0 1.21
Fg 45079.3700 1.21

21 Sa 45082.7400 0 1.18 Si—-Sg—-Fg-F,4
Fa 45083.9200 1.18
S 45082.7600 .02 .76
Fg 45083.5200 .78

22 Sa 45087.6700 0 37 Sp—-F4—Sg ~Fp
Fa 45088.0400 .37
Sa 45088.0400 37 7
Fg 45088.8100 1.14

23 | Sa 45092.3800 0 38 | Sa—Fa-955 - Fs
Fa 45092.7600 38
S 45092.7600 .38 .75
Fg 45093.5100 1.13

24 | Sa 45097.5700 0 1.14 Sa—-Sg—-Fg—-F,
Fa 45098.7100 1.14
S 45097.5900 .02 75
Fp 45098.3400 a7

25 | Sa 45106.6000 a7 .37 Sg—Fg —Sa—-F,
Fa 45106.9700 1.14
Sp 45105.8300 0 .76
Fp 45106.5900 .76

26 | Sa 45112.9700 .02 37 Sg—Sa—-Fs-Fp
Fa 45113.3400 .39
S 45112.9500 0 1.16
Fg 45114.1100 1.16

27 | Sa 45122.0500 .75 4 Sp - Fg —Sa4a—Fa4
Fa 45122.4500 1.15
Ss 45121.3000 0 75
Fp 45122.0500 .75

Table B.15. VAX Ada Compiler Results (Cont’'d)

B-14

First Run of Test Case 28
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME_SLICE

Parameter | Actual Measured | Normalized F, -5 |
Results Results ‘
Sa 56£19.5700 0 11.97
Fa 56531.5400 11.97 B
Sp 56521.7900 2.22 12.59 ‘
Fg 56534.3800 14.81
Sc 56521.7800 2.21 11.77
Fe 56533.5500 13.98
Sp 56520.8000 1.23 12.66
Fp 56533.4600 13.89
S 56520.3400 a7 11.73
Fg 56532.0700 125
Sp 56520.3300 .76 11.22
Fr 56531.5500 11.98

Execution Sequence: S4 —Sp - Sg~Sp—-Sc-Sg—-Fs-Fp—Fg—-Fp—-Fc - Fp

Table B.16. VAX Ada Compiler Results (Cont’'d)

Second Run of Test Case 28
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME_SLICE i

Parameter | Actual Measured | Normalized Fi-5;
Results Results

Sa 56569.0100 0 11.32
Fa 56580.3300 11.32
Se 56571.1100 2.1 11.46
Fg 56582.5700 13.56
Sc 56571.1000 2.09 11.03
Fec 56582.1300 13.12
Sp 56570.3200 1.31 11.8
Fp 56582.1200 13.11
Sg 56569.9100 9 11.05
Fg 56580.9600 11.95
SF 56569.9100 9 10.43
Fg 56580.3400 11.33

Execution Sequence: S4 ~ S¢p — Sg -~ Sp —Sc —Sp— Fa—Fr— Fg~-Fp - Fc - Fp

Table B.17. VAX Ada Compiler Results {Cont’d)

B-15

Third Run of Test Case 28
using VAX Ada Compiler, Version 1.0
without the PRAGMA TIME_SLICE

Parameter | Actual Measured | Normalized F; - S;
Results Results
Sa 56661.1700 0 14.56
Fi 56675.7300 14.56
Sg 56663.8800 2.71 14.34
Fpg 56678.2200 17.05
Sc 56663.8800 2.71 13.72
Fe 56677.6000 16.43
Sp 56663.0900 1.92 14.5
Fp 56677.5900 16.42
SE 56662.2000 1.03 14.25
Fe 56676.4500 15.28
Sr 56662.1900 1.02 13.55
Fr 56675.7400 14.57

Execution Sequence: Sy - Sp~Sg -Sp-Sc —-Sg—-Fa—-Fr-Fg—-Fp—-Fc-Fp

Table B.18. VAX Ada Compiler Results (Cont’'d)

B-16

Actual Results of Running Test Cases 1-9
using VAX Ada Compiler, Version 1.0
with the PRAGMA TIME_SLICE (0.05)

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

1 Sa 47806.4300 0 .73 Sa-Sg-F4-Fg
Fa 47807.1600 73
Sp 47806.5800 15 .69
Fg 47807.2700 .84

7 | 5. 47818.3400 02 5 | Sp-Si-F.i-Fp
Fa 47818.8400 .92
Y 47818.3200 0 1.09
Fp 47819.4100 1.09

3 Sa 47823.1100 0 .98 Sa—-Sg-Fp—Fy
Fa 47824.0900 .98
S 47823.1300 .02 48
Fpg 47823.6100 .5

4 Sa 47831.5500 0 1.19 Sa—-Sgp-Fpg-Fy4
Fa 47832.7400 1.19
Sp 47831.6200 .07 1.07
Fg 47832.6900 1.14

5 Sa 47836.0900 0 4 Sa—F4—-Sg —-Fpg
Fu 47836.4900 4
Sg 47836.4900 4 .56
Fg 47837.0500 .96

6 Sa 47840.8700 0 77 Sa—-Sp-Fp~F,4
Fa 47841.6400 Kii
Sg 47840.8900 .02 .38
Fpg 47841.2700 4

7 Sa 47845.9800 08 68 Sp—Sa—-Fg—F,
Fa 47846.6600 76
Sp 47845.9000 0 7
Fg 47846.6000 7

8 Sa 47850.2500 .02 .69 Sg—Sa—-Fa-Fp
Fa 47850.9400 71
Sp 47850.2300 0 1.24
Fp 47851.4700 1.24

9 Sa 47855.8400 4 .38 Sp—-Fg—Sa—Fau
Fu 47856.2200 .78
Sp 47855.4400 0 4
Fp 47855.8400 4

Table B.19. VAX Ada Compiler Results (Cont’d)

B-17

Actual Results of Running Test Cases 10-18
using VAX Ada Compiler, Version 1.0
with the PRAGMA TIME_SLICE (0.05)

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

10 Sa 47861.2200 0 1.16 Sa—-Sg—-Fg—F4
F4 47862.3800 1.16
S 47861.3700 .15 q
Fg 47862.0700 .85

11 Sa 47865.4000 .02 37 Sg—Sa-F4-Fpg
Fa 47866.1700 .79
S 47865.3800 0 1.17
Fg 47866.5500 1.17

12 Sa 47869.6900 0 1.16 Sa—Sp—-Fp—Fj4
Fa 47870.8500 1.16
Se 47869.7100 .02 .39
Fg 47870.1000 .41

13 | S4 47874.7600 0 1.24 S4-Sg—-Fg—-Fa,
Fa 47876.0000 1.24
Sg 47874.8300 .07 71
Fg 47875.5400 .78

14 | S4 47879.1400 0 .76 Sa—Fy—-Sg—-Fpg
Fa 47879.9000 .76
Sg 47879.9000 .76 .38
Fg 47880.2800 1.14

15 | Sa 47882.8400 0 1.15 Ss—Sg—-Fg—~Fj
Fa 47883.9900 1.15
Sg 47882.8600 .02 37
Fpg 47883.2300 .39

16 | Sa 47889.5900 .05 1.3 Sp—Sa—-Fg—-Fau
Fa 47890.8900 1.35
Sy 47889.5400 0 .82
Fp 47890.3600 .82

17 | Sa 47894.6200 .02 .81 Sg—Sa—Fs—-Fpg
Fa 47895.4300 .83
Ss 47894.6000 0 1.24
Fp 47895.8400 1.24

18 | Sa 47898.7800 .42 .85 Sp— Fg ~Sa—-Fj4
Fa 47899.6300 1.27
Sp 47898.3600 0 .42
Fp 47898.7800 42

Table B.20. VAX Ada Compiler Results (Cont’d)

B-18

Actual Results of Running Test Cases 19-27
using VAX Ada Compiler, Version 1.0
with the PRAGMA TIME_SLICFE (0.05)

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

19 Sa 47903.6400 0 74 Sa—-Sg—F4—Fp
Fa 47904.3800 .74
Ss 47903.8000 .16 1.13
Fg 47904.9300 1.29

20 | S, 47908.6600 .02 .39 Sg—Sys—-Fs—-Fp
Fa 47909.0500 41
Sg 47908.6400 0 1.22
Fg 47909.8600 1.22

21 Sa 47912.8300 0 1.25 Sa—-Sg-Fg~Fy4
Fa 47914.0800 1.25
Sg 47912.8500 .02 .85
Fg 47913.7000 .87

22 Sa 47919.1900 0 8 Sa~Sp—F4—Fp
Fa 47919.9900 .8
S 47919.2600 .07 1.17
Fg 47920.4300 1.24

23 | S 47924.9900 0 41 | Sa-Fa—-Sg-Fg
Fa 47925.4000 41
Sm 47925.4000 41 .86
Fg 47926.2600 1.27

24 Sa 47931.6800 0 1.21 Sa-Sgp-Fg—-Fa
Fu 47932.8900 1.21
Ss 47931.7000 .02 .82
Fg 47932.5200 .84

25 Sa 47937.3400 .05 8 Sp~Sa—-Fa-Fg
Fa 47938.1400 .85
Sg 47937.2900 0 1.2
Fp 47938.4900 1.2

26 | S, 47943.0000 .02 .38 Sg—~Sa—Fs—-Fp
Fu 47943.3800 .41
S 47942.9700 0 1.18
Fg 47944.1500 1.18

27 [Sa 47949.8300 82 4 Sp—Fp—Ss—Fa
Fa 47950.2300 1.22
Sp 47949.0100 0 .82
Fg 47549.8300 82

Table B.21. VAX Ada Compiler Results (Cont’d)

First Run of Test Case 28 !
using VAX Ada Compiler, Version 1.0 |
with PRAGMA TIME_SLICE (0.05)
[Parameter | Actual Measured | Normalized F - l
Results Results :
Sa 56000.9800 0 12.96 :
Fa 56013.9400 12.96 !
Sp 56001.3500 37 9.06 ;
Fg 96010.4100 9.43 :
Sc 56001.3500 .37 1.7
Fe 56003.0500 2.07
Sn 56001.2100 23 12.77 ;
Fp 56013.9800 13 :
S 56001.1300 15 9.18
Fg 56010.3100 933 |
Sr 56001.1300 15 1.3
Fp 56002.9300 1.95
Execution Sequence: Sy = Sp~-Sg-Sp~-Sc—-Sg—-Fp—-Fc—-Fg—-Fg-F4-Fp

Table B.22. VAX Ada Compiler Results {Cont’d)

Second Run of Test Case 28
using VAX Ada Compiler, Version 1.0
with PRAGMA TIME_SLICE (0.05)
Parameter | Actual Measured | Normalized F, -5
Results Results
Sa 56022.5000 0 14.04
Fa 56036.5400 14.04
Sp 36022.8000 3 9.39
Fg 56032.1900 9.69
Sc 56022.8000 3 1.62
Fe 56024.4200 1.92
Sp 56022.7200 .22 13.68
Fp 56036.4000 13.9
Se 56022.6400 .14 9.4
Fg 56032.0400 9.54
Sr 56022.6400 14 1.67
Fg 56024.3100 1.81
Execution Sequence: S4 —Sr—-Sg-Sp-Sc—-Sp-Fp—-Fc—-Fg—-Fp—-Fp—-F,4

Table B.23. VAX Ada Compiler Results (Cont’d)

B-20

Third Run of Test Case 28
using VAX Ada Compiler, Version 1.0
with PRAGMA TIME_SLICE (0.05)

Parameter | Actual Measured | Normalized F; - S;
Results Results

Sa 56042.6700 0 15.32
Fa 56057.9900 15.32
Sp 56042.9900 .32 9.46
Fp 56052.4500 9.78
Sc 56042.9900 .32 1.54
Fe 56044.5300 1.86
Sp 56042.9100 .24 14.98
Fp 56057.8900 15.22
SE 56042.8300 .16 9.36
Fg 56052.1900 9.52
Sr 56042.8300 .16 1.63
Fr 56044.4600 1.79

Execution Sequence: Sq —Sp—-Sg-Sp -Sc ~Sg—-Fr—Fc—-Fg~Fp—Fp—-Fj4

Table B.24. VAX Ada Compiler Results {Cont’d)

B-21

Actual Results of Running Test Cases 1-9
using Meridian AdaVantage Compiler, Version 2.1

Test Actual Measured | Normalized | F; — S; Execution
Case Results Results Sequence

1 Sa 45508.5099 9.44 94501 | Sg— Fg— 5S4 — Fju
Fy 45517.9600 18.8901
S 45499.0699 0 9.44
Fg 45508.5099 9.44

2 Sa 45528.8900 0 9.45 Sa—Fa—5g—-Fp
Fu 45538.3400 9.45
Se 45538.3400 9.45 9.44
Fg 45547.7800 18.89

3 Sa 45531.6299 9.4499 9.44 Sp—Fg —S4 - F4
Fyu 45571.0699 18.8899
Sg 45552.1800 0 9.4499
Fg 45561.6299 9.4499

1 | Sa 45575.4100 0 945 | Sa—Fa—Sp - Fg
Fa 45584.8600 945
S 45584.9100 9.5 9.45
Fg 45594.3600 19.95

5 Sa 45598.8100 0 94499 | Sp -~ Fo -~ Sg - Fg
Fa 45608.2599 9.449
Sg 45608.3100 9.5 9.499
Fg 45617.7599 18.9499

6 Sa 45640.5000 0 9.45 Sa—-F4 -Sg—Fg
Fa 45649.9500 9.45
S 45650.0000 9.5 9.45
Fp 45659.4500 18.95

7 Sa 45679.3300 9.5 9.45 Sp—-Fg—-Ss-Fa
Fa 45688.7800 18.95
Sg 45669.8300 0 9.45
Fg 45679.2800 9.45

8 Sa 45720.5200 9.5 9.45 Sg—Fg —Sa—~Fy
Fyu 45729.9700 18.95
Se 45711.0200 0 9.45
Fp 45720.4700 9.45

9 Sa 45743.5400 9.5 9.45 Sg—Fg—5a—-Fy
Fa 45752.9900 18.95
Se 45734.0400 0 9.44
Fg 45743.4800 9.44

Table B.25. Meridian AdaVantage Compiler Results

B-22

Actual Results of Running Test Cases 10-18
using Meridian AdaVantage Compiler, Version 2.1

Test Actual Measured | Normalized | F; — S; Execution
Case Results Results Sequence

10 | S4 47558.8799 9.4499 186801 | Sp — Fg =S4 - F4
Fi 47577.5600 28.13
Sg 47549.4300 0 9.4499
Fg 47558.8799 9.4499

11 Sa 47586.6200 0 18.67 Sa—-Fys-Sg-Fs
Fa 47605.2900 18.67
Ss 47605.2900 18.67 9.45
Fg 47614.7400 28.12

12 Sa 47628.6400 9.4501 18.67 Sp~Fg—S4—~Fy4
Fi 47647.3100 28.1201
Sp 47691.1899 0 9.4501
Fg 47628.6400 9.4501

13 | Sa 47651.7599 0 186701 | Sy~ F4 - Sg - Fp
Fa 47670.4300 18.6701
Sp 47670.4900 18.7301 9.4499
Fg 47679.9399 28.18

14 | Sa 47684.3300 0 18.6799 | S4 — Fa - Sg - Fp
Fq 47703.0099 18.6799
Sp 47703.0600 18.73 9.4499
Fg 47712.5099 28.1799

15 | Sa 47727.0600 0 1884 [Sy — F4—-Sg—Fg
Fa 47745.9000 18.84
Ss 47745.9600 18.9 9.44
Fp 47755.4000 28.34

16 | Sa 47769.6299 9.6699 186701 | Sg — Fgp — Sa — Fa
Fa 47788.3000 28.34
Sg 47759.9600 0 9.67
Fp 47769.5800 9.62

17 | Sa 47801.9300 9.51 1867 | Sg~Fg -S4 - F4
Fa 47820.6000 28.18
Sg 47792.4200 0 9.45
Fp 47801.8700 9.45

18 | Su 47834.1700 9.5 1867 | Sp—Fg -S4 —-F,
Fa 47852.8400 28.17
Sgp 47824.6700 0 9.44
Fg 47834.1100 9.44

Table B.26. Meridian AdaVantage Compiler Results (Cont’d)

B-23

Actual Results of Running Test Cases 19-27
using Meridian AdaVantage Compiler, Version 2.1

Test Actual Measured | Normalized | F; — S; Execution
Case Results Results Sequence

19 | S4 50889.5600 18.67 94499 | Sp— Fg—Ss - Fa4
Fa 50899.0099 28.1199
S 50870.8900 0 18.67
Fg 50889.5600 18.67

20 Sa 50903.4000 0 9.45 Sa-F4-5g—-Fp
Fa 50912.8500 9.45
Ss 50912.8500 9.45 18 .68
Fpg 50931.5300 28.13

21 | Sa 50954.7599 18.6799 | 94501 | Sp — Fg — Sa4 — £
Fa 50964.2100 28.13
Sg 50936.0800 0 18.6799
Fg 50954.7599 18.6799

22 | Sa 50968.3300 0 9.44 Sa~Fs-Sg-Fp
Fy 50977.7700 9.44
S 50977.8300 9.5 18.67
Fp 50996.5000 28.17

23 | Sa 51000.6800 0 9.44 Sa—-F1-Sg~Fpg
Fa 51010.1200 9.44
Ss 51010.1800 9.5 18.67
Fg 51028.8500 28.17

24 | Sa 51050.9300 0 94499 | Sy — F4 - Sg - Fp
Fa 51060.3799 9.4499
Sg 51060.4399 9.5099 18.6701
Fg 51079.1100 28.18

25 | Sa 51102.4300 18.73 9.45 Sg— Fg—Sa—-Fy
Fa 51111.9000 28.18
S 51083.7200 0 18.68
Fg 51102.4000 18.68

26 | Sa 51134.7500 18.73 9.45 Sp—Fg—Sa—-Fa
Fy 51144.2000 28.18
S 51116.0200 0 18.68
Fp 51134.7000 18.68

27 Sa 51166.9900 18.7301 9.4499 | Sg — Fg — Sa — Fau
Fy 51176.4399 28.18
Sp 51148.2599 0 18.68
Fg 51166.9399 18.68

Table B.27. Meridian AdaVantage Compiler Results (Cont’d)

B-24

First Run of Test Case 28
using Meridian AdaVantage Compiler, Version 2.1

Parameter | Actual Measured | Normalized F, - S;
Results Results

Sa 59526.8700 37.9 244.75
Fy 59771.6200 282.65
Sg 59517.4200 28.45 235.5199
Fg 59752.9399 263.9699
Sc 59517.2599 28.2899 226.2401
Fe 59743.5000 254.53
Sp 59498.5800 9.61 244.75
Fp 59743.3300 254.36
Se 59489.1400 17 235.52
Fg 59724.6600 235.69
Sr 59488.9700 0 226.19
Fp 59715.1600 226.19

Execution Sequence: Sp — Sgp ~Sp —Sc - Sg—Sa-Fp—-Fg—~-Fp—Fc - Fg - Fj4

Table B.28. Meridian AdaVantage Compiler Results (Cont’d)

B-25

Actual Results of Running Test Cases 1-9
using Elrsi/Verdiz Ada Compiler, Version 5.4

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

T | Sa 17780416 0 30 | Si-—5Sp-Fp-Fqa
Fa 47783.416 3.0
S 47780.512 .096 2.404
Fg 47782.916 2.5

2 Sa 47790.916 1 1.4 Sg—-Sa-Fi-Fp
Fa 47792.316 1.5
Sg 47790.816 0 2.9
Fg 47793.716 2.9

3 | Sa 47800716 0 29 | Sa—Sp - Fp - Fyu
Fa 47803.616 2.9
Ss 47800.816 1 1.4
Fs 47802.216 1.5

4 Sa 47814.120 0 3.3 Sa—-Sg-Fp—-F,
Fa 47817.420 3.3
Ss 47814.220 1 2.596
Fg 47816.816 2.696

5 Sa 47826.020 0 14 Sa—F4—-Sg-Fg
Fa 47827.420 1.4
Ss 47827.420 1.4 1.4
Fg 47828.820 2.8

] Sa 47836.920 0 2.9 Sa—-Sg—-Fg~-Fju
Fa 47839.820 2.9
S 47837.020 A 1.4
Fg 47838.420 1.5

7 Sa 47850.020 1 1.8 Sp—Sa—-Fp-Fa
Fa 47851.820 2.8
S 47849.020 0 2.404
Fp 47851.424 2.404

8 Sa 47859.724 1 1.4 Sg—Sa—Fs—-Fp
Fa 47861.124 1.5
Sp 47859.624 0 2.8
Fpg 47862.424 2.8

9 Sa 47872.020 1.396 1.404 | Sp— Fg — Sa— F4
Fa 47873.424 2.8
Sg 47870.624 0 1.396
Fp 47872.020 1.396

Table B.29. Elxsi/Verdix Ada Compiler Results

B-26

Actual Results of Running Test Cases 10-18
using Elzsi/Verdiz Ada Compiler, Version 5.4

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

10 | Sy 47886.624 0 4.4 Sa—-Sp-Fg—-Fau
Fa 47891.024 4.4
Sg 47886.724 1 2.4
Fg 47889.124 2.5

11 Sa 47897.524 .096 3 Sg~Ss—-F4—-Fp
Fy 47900.524 3.096
S 47897.428 0 4.8
Fg 47902.228 4.8

12 Sa 47910.528 0 4.296 Sa—Sg - Fg— Fu
Fa 47914.824 4.296
Sgs 47910.624 .096 1.404
Fg 47912.028 1.5

13 | Sa 47922.528 0 4404 | Sp-Sgp - Fg - F4
Fa 47926.932 4.404
Ss 47922.624 .096 2.404
Fg 47925.028 2.5

12 | Sa 47935.628 0 2804 | Sa - Fa—Sg - Fp
Fa 47938.432 2.804
Sp 47938.432 2.804 1.396
Fpg 47939.828 4.2

15 | Sa 47953.132 0 4.9 Sa—-Sg—Fp—Fju
Fa 47958.032 4.9
Sg 47953.232 .1 1.4
Fg 47954.632 1.5

16 | S4 47968.736 1 3296 | Sg—Sa—-Fg-Fa
Fy 47972.032 4.296
Sg 47967.736 0 2.396
Fg 47970.132 2.396

17 Sa 47978.736 .104 3.7 Sp—Sa-Fs—-Fp
Fa 47982.436 3.804
S 47978.632 0 5.4
Fg 47984.036 54

18 | Sa 47993.636 1.6 3.2 Sp—Fp -S4 —F,
Fa 47996.836 48
Sp 47992.036 0 1.6
Fpg 47993.636 1.6

Table B.30. Elxsi/Verdix Ada Compiler Results (Cont'd)

Actual Results of Running Test Cases 19-27
using Elrsi/Verdiz Ada Compiler, Version 5.4

Test Actual Measured | Normalized | F; — S; Execution
Case Results Results Sequence

19 Sa 43004.440 0 2396 | Sy —Sp~Fs-Fp
Fq 48006.836 2.396
Sg 48005.440 1 3.5
Fg 43008.940 4.5

20 Sa 48017.840 1 1.4 Sg—-Sa-Fy—-Fpg
Fa 48019.240 1.5
Se 48017.740 0 4.5
Fg 48022.240 4.5

21 | S, 43028 640 0 43 | Si—Sp-— Fg— Fq |
Fa 43032.940 4.3
Sg 48028.740 1 2.9
Fg 48031.640 3

22 Sa 48041.448 0 3.4 Sa—-Sg~-F4-Fpg
Fa 48044.848 34
Sg 48041.548 1 4.2
Fp 48045.748 4.3

23 Sa 48053.344 0 1.404 Sa—-F4-Sg ~Fpg
Fa 48054.748 1.404
Sg 48054.748 1.404 2.896
Fp 48057.644 4.3

24 Sa 48066.644 0 4.404 Sa-Sp-Fg-Fyu
Fa 48071.048 4.404
Ss 48066.748 .104 2.896
Fg 48069.644 3

25 | Sa 48079.748 1 2.6 Sp—Sa—-Fa-Fp
Fa 48082.348 3.6
Ss 48078.748 0 4.8
Fpg 48083.548 4.8

26 | Sa 48092.952 1 1.7 Sg~-Sa—-Fa-Fp
Fa 48094.652 1.8
Sg 48092.852 0 5.2
Fp 48098.052 5.2

27 | Sa 48112.752 5.8 2.3 Sg—Fg—~Sa—-Fy
Fa 48115.052 8.1
Sg 48106.952 0 5.8
Fg 48112.752 5.8

Table B.31. Elxsi/Verdix Ada Compiler Results (Cont’d)

B-28

First Run of Test Case 28

using Elrsi/Verdizx Ada Compiler, Version 5.4

|

|

i Parameter | Actual Measured | Normalized F, - S;

g Results Results

S 61406.192 0 57.408

i Fa 61463.600 57.408

i Sg 61407.392 1.2 44.912

i Fg 61452.304 46.112

! Se 61407.392 1.2 11.4
Fe 61418.792 12.6

! Sp 61406.392 2 59.912

i Fp 61466.304 60.112

L Se 61406.296 .104 45.2

I Fe 61451.496 45.304 ‘

| Sr 61406.296 104 12.304
Fr 61418.600 12.408

Execution Sequence: S4 —Sp ~-Sg-Sp~-Sc~-Sp—Fg~Fc—-Fg-Fg—-F4—-Fp

Table B.32. Elxsi/Verdix Ada Compiler Results (Cont’d)

Second Run of Test Case 28

using Elzsi/Verdiz Ada Compiler, Version 5.4

Parameter | Actual Measured | Normalized F; - S;
Results Results
Sa 61467.3040 0 92.904
Fa 61560.2080 92.904
Sa 61469.0000 1.696 58.008
Fg 61527.0080 59.704
Sc 61469.0000 1.696 12.304
Fe 61481.3040 14
Sp 61468.0000 .696 92.608
Fp 61560.6080 93.304
Se 61467.9040 .6 58.496
Fg 61526.4000 59.096
Sr 61467.9040 8 10.696
Fr 61478.6000 11.296

Execution Sequence: Sy ~Sp—-Sg-Sp—~Sc ~-Sp—-Fp—-Fc -Fg—Fg—-Fp—-Fu

Table B.33. Elxsi/Verdix Ada Compiler Results (Cont’d)

B-29

Third Run of Test Case 28 T

using Elrsi/Verdiz Ada Compiler, Version 5.4
Parameter | Actual Measured | Normalized F, -5
Results Results
Sa 61562.0160 0 63
Fq 61625.0160 63
Ss 61563.2080 1.192 47.704
Fg 61610.9120 48.896
Sc 61563.2080 1.192 9.104
Fe 61572.3120 10.296
Sp 61562.2080 192 60.112
Fp 61622.3200 60.304
Se 61562.1040 .088 50.216
Fg 61612.0160 50.304
Sr 61562.1040 .088 8.208
Fp 61570.3120 8.296
Execution Sequence: Sy — Sp —Sg—-Sp~Sc-Sp—-Fr—-Fc~-Fg—-—Fg—-Fp—-F,

Table B.34. Elxsi/Verdix Ada Compiler Results (Cont'd)

B-30

Actual Results of Running Test Cases 1-9
using Encore/Verdiz Concurrent Ada Compiler. Version 5.5

Test Actual Measured | Normalized | F, - S; Execution
Case Results Results Sequence

1 Sa 42459.449 7.044 6.708 Sg~Fg —54 - F4
Fa 42466.157 13.752
Sg 42452.405 0 7.038
Fg 42459.443 7.038

2 Sa 42466.805 0 6.709 Sis—F4 -5 —Fp
Fa 42473.514 6.709
Ss 42473.520 6.715 7.035
Fg 42480.555 13.75

3 Sa 42488.749 7.044 6.708 Sg—Fg -S54 - F4
Fyq 42495.457 13.752
Sg 42481.705 0 7.037
Fg 42488.742 7.037

4 Sa 42496.725 0 6.707 Sa-F4-5g-Fp
Fa 42503.432 6.707
Ss 42503.439 6.714 7.034
Fg 42510.473 13.748

3 Sa 42511.704 0 6.71 Sa—F4~5g—Fpg
Fu 42518.414 6.71
S 42518.473 6.769 7.035
Fg 42525.508 13.804

6 Sa 42526.208 0 6.71 Sa—-Fs-55-Fpg
Fu 42532.918 6.71
Sg 42532.924 6.716 7.036
Fp 42539.960 13.752

7 Sa 42548.164 7.06 6.709 Sp—~Fg—5a—-Fy
Fa 42554.873 13.769
Sg 42541.104 0 7.038
Fg 42548.142 7.038

8 Sa 42563.169 7.041 6.706 Sp—-Fg~54—-F,
Fa 42569.875 13.747
S 42556.128 0 7.035
Fg 42563.163 7.035

9 Sa 42578.166 7.062 6.711 Sp—Fp—5a—-Fy
Fa 42584.877 13.773
Sp 42571.104 0 7.038
Fp 42578.142 7.038

Table B.35. Encore/Verdix Concurrent Ada Compiler Results

B-31

Actual Results of Running Test Cases 10-18
using Encore/Verdiz Concurrent Ada Compiler, Version 5.5

Test Actual Measured | Normalized | F; - S; Execution
| Case Results Results Sequence

10 Sa 42593.148 7.043 13441 | S - Fg -S4 - F,4
F4 42606.589 20.484
Sp 42586.105 0 7.037
Fg 42593.142 7.037

11 Sa 42607.817 0 13409 | S4 -~ Fa—Sg — F
Fa 42621.226 13.409
Ss 42621.232 13.415 7.033
Fg 42628.265 20.448

12 Sa 42635.948 7.043 13412 | Sg - Fg =S4 — Fyu
Fa 42649.360 20.455
Sp 42628.905 0 7.036
Fpg 42635.941 7.036

13 Sa 42650.007 0 13413 | S4 — F4 - Sg - Fg
Fa 42663.420 13.413
Se 42663.426 13.419 7.035
Fg 42670.461 20.454

14 Sa 42671.104 0 13413 | Sy — F4 - Sg — Fpg
Fa 42684.517 13.413
Sgp 42684.524 13.42 7.035
Fg 42691.559 20.455

15 Sa 42692.208 0 13413 | Sy~ F4—Sg - FB
Fa 42705.621 13.413
Sy 42705.627 13.419 7.034
Fg 42712.661 20.453

16 Sa 42720.349 7.045 13414 | Sg — Fg — Ss — Fy
Fyu 42733.763 20.459
Sy 42713.304 0 7.038
Fpg 42720.342 7.038

17 Sa 42742.063 7.045 13417 | S — Fg — S5 — F4
Fa 42755.480 20.462
Se 42735.018 0 7.039
Fp 42742.057 7.039

18 Sa 42763.769 7.065 13.411 | Sp— Fg —Sa — Fa
Fa 42777.180 20.476
Sp 42756.704 0 7.037
Fg 42763.741 7.037

Table B.36. Encore/Verdix Concurrent Ada Compiler Results (Cont’d)

B-32

Actual Results of Running Test Cases 19-27
using Encore/Verdiz Concurrent Ada Compiler, Version 5.5

Test Actual Measured | Normalized | F; - S; Execution
Case Results Results Sequence

19 | S4 12792.487 14.071 6.705 | Sp — Fp — S4 — Fq
Fy 42799.192 20.776
Sp 42778.416 0 14.064
Fp 42792.480 14.064

20 Sa 42800.505 0 6.713 | Sa—F4—-Sg - Fp
Fy 42807.218 6.713
Ss 42807.224 6.719 14.075
Fg 42821.299 20.794

21 S 42836.579 14.069 6.705 | Sp—Fp -S4~ Fa
Fi 42843.284 20.774
Sg 42822.510 0 14.062
Fg 42836.572 14.062

22 Sa 42844.624 0 6.708 | Sa— Fa—-Sg-Fpg
Fa 42851.332 6.708
S 42851.339 6.715 14.064
Fp 42865.403 20.779

23 | Sa 42866.704 0 6.718 | Sa—Fa—-Sp—Fp
F4 42873.415 6.718
Ss 42873.441 6.737 14.066
Fp 42887.507 20.803

24 | S, 42888.833 0 6708 | Sq—F4—-Sg—Fs
Fa 42895.541 6.708
Sa 42895.547 6.714 14.062
Fp 42909.609 20.776

25 | Sa 42925.015 14.111 6.709 | Sg— Fp—Sa— Fa
Fa 42931.724 20.82
Sp 42910.904 0 14.069
Fg 42924.973 14.069

26 | Sa 42947.097 14,071 6.707 | Sp— Fg—Sa4— F4
Fa 42953.804 20.778
Sp 42933.026 0 14.065
Fg 42947.091 14.065

27 | Sa 42969.191 14.087 6.707 | Sg— Fp—Sa— Fa
Fa 42975.898 20.794
Ss 42955.104 0 14.068
Fp 42969.172 14.068

Table B.37. Encore/Verdix Concurrent Ada Compiler Results (Cont’d)

B-33

First Run of Test Case 28

using Encore/Verdiz Ada Compiler, Version 5.5

|
1
1

Parameter | Actual Measured | Normalized F,-S; B
Results Resuits |
Sa 63076.5990 27.895 181.68 !
Fa 63258.2790 209.575 !
f Sg 63069.7390 21.035 174.469
i Fg 63244.2080 195.504
r Se 63069.5920 20.888 167.738
I Fe 63237.3300 188.626
Sp 63055.8670 7.163 181.298
Fp 63237.1650 138.461
Se 63048.8460 142 174.706
Fg 63223.4100 174.706
Sr 63048.7040 0 167.665
Fg 63216.3690 167.665
Execution Sequence: Sp—-Sg~-Sp-5¢c - Sg - Sa-Ff - Fg—-Fp~Fc—-Fg—-F,

Table B.38. Encore/Verdix Ada Compiler Results (Cont'd)

Second Run of Test Case 28

using Encore/Verdiz Ada Compiler, Version 5.5

Parameter | Actual Measured | Normalized Fi - S
Results Results
Sa 63286.8750 27.871 181.722]
Fa 63468.5970 209.593
Sg 63280.0220 21.018 174.497
Fg 63454.5190 195.515
Sc 63279.8760 20.872 167.763
Fe 63447.6390 188.635
Sp 63266.1680 7.164 181.305
Fp 63447.4730 188.469
Sg 63259.1460 142 174.584
Fg 63433.7300 174.726
SFr 63259.0040 0 167.689
Fr 63426.6930 167.689

Execution Sequence: Sp -~ Sg ~Sp —Sc —Sg—Sa~-Fp-Fg—Fp—Fc—-Fg—-Fa

Table B.39. Encore/Verdix Ada Compiler Results (Cont’d)

B-34

Third Run of Test Case 28
using Encore/Verdiz Ada Compiler, Version 5.5

Parameter | Actual Measured | Normalized F;, -S;
Results Results
Sa 63497.1770 27.873 181.68
Fa 63678.8570 209.553
Sg 63490.3260 21.022 174.452
Fg 63664.7780 195.474
Sc 63490.1790 20.875 167.72
Fe 63657.8990 188.59¢C
Sp 63476.4660 7.162 181.267
Fp 63657.7330 18.429 ~
SE 63469.4460 142 | 174.541
FEg 63643.9870 174.683
Sr 63469.3040 0 167.644
Fg 63636.9480 167.644

Execution Sequence: Sp — Sg —Sp - Sc ~Sg—Sa —Fp-Fg - Fp - Fc - Fg - F4

Table B.40. Encore/Verdix Ada Compiler Results (Cont’d)

B-35

[2%

(1}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bibliography

. A., Burns and A.J. Wellings. “Real-Time Ada Issues,” ACM SIGADA Ada Letlers. 1957
Special Edition, VII(6):43-46 (Fall 1987).

Alsys Inc., Waltham, MA. Alsys PC AT Ada Compiler User's Guide (Version 3.2 Edition).
August 1987.

. Boocin, Grady. Scftware Engineering with Ada (Second Edition). Menlo Park, CA.: The
Benjamin/Cummings Publishing Company, 1987.

. Borger, Mark and others. “A Testbed for Investigating Real-Time Ada Issues,” ACM SIGA DA
Ada Letters, 1988 Special Edition, VIII(T):7-11 (Fall 1988).

. Burger, Thomas M. and Kjel' W. Nielson. “An Assessment of the Overhead Associated with
Tasking Facilities and Task Paradigms in Ada,” ACM SIGADA Ada Letters, VII(1)19-38
(Jan/Feb 1987).

. Coffman, Edward G. and Leonard Kleinrock. “Computer Scheduling Methods and Their
Countermeasures.” In Spring Joint Computer Conference, pages 11-21, Vol 32 1968,

. Cornhill, Dennis. “Session Summary: Tasking,” ACM SIGADA Ada Letters, 1987 Spectal
Edition, VII(6):29-32 (Fall 1987).

. Cornhill, Dennis and others. “Limitations of Ada for Real-Time Scheduling,” ACM SIGADA
Ada Letters, 1987 Special Edition, VII(6):33-39 (Fall 1987).

. Cornhill, Dennis and Lui Sha. “Priority Inversion in Ada,” ACM SIGADA Ada Lelters.
VII(7):30-32 (Nov/Dec 1987).

Deitel, Harvey M. An Intoduction to Operating Systems. Reading, Mass.: Addison-Wesley
Publishing Company, Inc., 1984.

Digital Equipment Corporation, Maynard, MA. VAX Ada Language Reference Manual (Ver-
sion 1.0 Edition), February 1985.

DoD. Military Standard: Ada Programming Language - ANSI/MIL-STD-18154. Department
of Defense, Washington, D.C., January 1983.

Finkel, Raphael A. An Operating Systems Vade Mecum. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1986.

Frankel, Gary. “Improving Ada Tasking Performance,” ACM SIGADA Ada Letters, 1937
Special Edition, VII(6):47-48 (Fall 1987).

Gonzales, Jr., M. J. “Deterministic Processor Scheduling,” ACM Computing Surveys.
9(3):177-182 (Sep 1977).

Goodenough, John B. and Lui Sha. “The Priority Ceiling Protocol: A Method for Minimizing
the Blocking of High Priority Ada Tasks,” ACM SIGADA Ada Letters, 1988 Special Edition,
VIII(7):20-31 (Fall 1988).

Habermann, A. N. Introduction to Operating System Design. Chicago, Ill.: Science Research
Associates, Inc., 1976.

Kleinrock, Leonard. “A Continuum of Time-Sharing Scheduling Algorithms.” In Spring Joint
Computer Conference, pages 453-458, Vol 36 1970.

Levine, Gertrude. “The Control of Priority Inversion in Ada,” ACM SIGADA Ada Letters,
VIII(6):53-56 (Nov/Dec 1988).

BIB-1

. Liu, Jane W.3. and Kwei-Jay Lin. “On Means to Provide Flexibility in Scheduling,™ .1Cif

SIGADA Ada Tetters, 1988 Special Edition, VIII(7):32-34 (Fall 1988).

. Locke, C. Douglass. and others. “Priority Inversion and Its Control: An Exberiment.al Inves-

tigation,” ACM SIGADA Ada Letters, 1988 Special Edition, VIII(7):39-42 (Fall 1988).

. Locke, C. Douglass. and David R. Vogel. “Problems in Ada Runtime Task Scheduling,” 4CV/

SIGADA Ada Letters, 1987 Special Edition, VII(6):51-53 (Fall 1987).

. McCormick, Frank. “Scheduling Dificulties of Ada in the Hard Real-Time Environment,”

ACM SIGADA Ada Letters, 1987 Special Edition, VII(6):49-50 (Fall 1987).

. Serlin, Omri. “Scheduling of Time Critical Processes.” In Spring Joint Computer Conference,

pages 925-932, Vol 40 1972.

. Silberschatz, Abraham and James L. Peterson. Operating System Concepts. Reading, Mass.:

Addison-Wesley Publishing Company, Inc., 1988.

. Verdix Corporation, San Hose, CA. Elzsi/Verdiz Ada Development System Reference (Version

5.4 Edition), 1988.

. Whitehill, Stephen B. and others. Meridian AdaVantage Compiler User's Guide (Version 2.1

Edition). Meridian Software Systems, Inc., Laguna Hills, CA.

BIB-2

Vita

Coptain Gary A, Whitte D - - -

uated from Franklin High School in Franklin, Wisconsin, in 1972. He enlisted in the United States
Air Force on 7 November 1973, attended Basic Military Training School at Lackland AFB, Texas
for six weeks, and then transferred to Keesler AFB, Mississippi, where he completed Electronic

Equipment Repair training. Next, he was assigned to Patrick AFB, Florida from August 1974

until March 1980 where he worked as a Ground Radio Equipment Repairman in the 2179 Commu-
nic;tions and Installation Group. In September 1979, he was selected for the Airman Education
Commissioning Program (AECP) and was transferred to the University of Florida in Gainesville.
He received the degree of Bachelor of Science in Engineering (Computer and Information Sciences)
in July 198\2. Then, he attended Officer Training School (OTS) at Lackland AFB and received
a commission on 13 October 1982. From OTS, he was assigned to Wright-Patterson AFB, Ohio
where he served as an Information Systems Requirements and Plans Officer at the Aeronautical
Systems Division’s Information Systems and Technology Center from October 1982 until November
1985. He remained at WPAFB and transferred to the C-17 System Program Office (SPO) where he
served as a Software Design Manager until entering the School of Engineering, Air Force Institute
of Technology, in May 1988. While serving in the C-17 SPO and during his first year at AFIT, he
also completed coursework at Wright State University in Fairborn, Ohio and received the degree of

Masters in Business Administration in June 1989. Captain Whitted is married and has 3 children.

]

VITA-1

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
7b. DECLASSIFICATION / DOWNGRADING SCHEDULE hpproved for public release; distribution
unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/ENG/89D-18
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
School of Engineering AFIT/ENA
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Ada Language Control Facility ASD/SCEL
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
. . PROGRAM PROJECT TASK WORK UNIT
ASD Communications—Computer Systems Center ELEMENT NO. I NO. NO ACCESSION NO
Wright-Patterson AFB, OH 45433
11. TITLE (Include Security Classification) (UNCLASSIFIED)

Determination of the Underlying Task Scheduling Algorithm for an Ada Run-Time System

12. PERSONAL AUTHOR(S))
Gary A Whitted, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
MS Thesis FROM TO 1989, December 126

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GRoup SUB-GROUP Software Engineering, Ada task scheduling, Computer
12 05 Programming, Ada Compilers, Algorithms

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: James W. Howatt, Maj, USAF
Assistant Professor of Computer Systems

Abstract:
The purpose of this thesis investigation was to determine whether the task scheduling algo-
rithm of an Ada compiler could be detected using a suite of Ada programs. This was done by
identifying the task parameters and algorithm characteristics which differentiate one sched—
uling algorithm from the others. After these parameters and characteristics were identifig
+ a set of test cases was developedto encompass the various parameter relationships requir
to detect the execution of individual algorithms. These test cases were modeled using Ada
programs. Then, the programs were compiled and executed using several Ada compilers where
the task scheduling algorithms of five run-time systems was known. The execution results
were analyzed to determine whether the Ada programs were capable of revealing the task
scheduling algorithm used by the Ada run~time system. The analyses showed that the detect-
ion of five scheduling schemes is possible ggmg a sinale Ada proaram,
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
J UNCLASSIFIED/UNLIMITED [SAME AS RPT (3J oTiC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) | 22c OFFICE SYMBOL
James W. Howatt, Maj, USAF 513-255-3576 AFIT/ENG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

